• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home BIOENGINEERING

0.6 percent soy isoflavone in the diet decrease muscle atrophy

Bioengineer.org by Bioengineer.org
January 18, 2018
in BIOENGINEERING
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: European Journal of Nutrition

Scientists at Tokyo Institute of Technology (Tokyo Tech) have discovered a means of reducing muscle atrophy by the addition of the soy-derived isoflavone aglycone (AglyMax) to the diet of mice. This attenuation by soy isoflavone is attributable to block the apoptosis-dependent pathway in muscle fiber. The AglyMax supplement also anticipate to attenuate age-related muscle loss, sarcopenia.

Healthy muscles are integral to overall good health, as muscle mass is important for appropriate metabolism and mobility. Unfortunately, as the population of ageing individuals increases worldwide, and people adopt a more sedentary lifestyle, healthy muscles can be deprived of activity and gradually waste away. Such a process can also occur in individuals with long term injuries. This condition, called atrophy, can result in a myriad of constraints in an individual's life. Although adequate exercise and nutrition normally help maintain healthy muscle mass, hormone therapy and dietary supplements have also been shown to be effective. In particular, isoflavones found in soy products are known to possess marked anti-oxidant potential. Studies have also shown the beneficial effects of isoflavones on muscle mass in mice and other rodents.

Kunihiro Sakuma and colleagues expanded on this knowledge and sought to investigate whether a dietary isoflavone aglycone (AglyMax) could inhibit muscle atrophy? They used a mouse model to address this question. In order to induce a muscle atrophy condition, they removed the sciatic nerve connection to the calf muscle of mice. Consequently, the muscle was deprived of nerve stimulations, leading to gradual atrophy of the muscle and catastrophic loss of muscle mass.

Two groups of mice with severed sciatic nerves of the left leg were fed either a normal diet or a diet supplemented with AglyMax. After 2 weeks, the muscles from these mice were compared. The mice on the AglyMax diet were found to have substantially thicker muscle fibers in the affected muscle, compared to those on a normal diet. This is clearly depicted in Figure 1.

The scientists also sought to determine the way in which isoflavones reduced muscle atrophy. In doing so, they found that isoflavone-based diet inhibited muscle cell death (apoptosis), as shown in Figure 2.

Despite such crucial insights, the scientists evaluated the effect of the soy supplementation in denervated muscles only; therefore, it remains to be seen whether soy-supplementation plays a similar therapeutic role for other conditions, like ageing related atrophy. There is hope that future studies will clarify both the role that isoflavones play in modulating muscle atrophy, as well as its possible therapeutic application in individuals with muscle atrophy due to ageing or illness.

###

Media Contact

Emiko Kawaguchi
[email protected]
81-357-342-975

http://www.titech.ac.jp/english/index.html

Related Journal Article

http://dx.doi.org/10.1007/s00394-017-1593-x

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Ferrets, cats and civets most susceptible to coronavirus infection after humans

December 10, 2020
IMAGE

Deep Longevity publishes an epigenetic aging clock of unprecedented accuracy

December 8, 2020

How poor oral hygiene may result in metabolic syndrome

December 8, 2020

New findings shed light on the repair of UV-induced DNA damage

December 8, 2020
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    48 shares
    Share 19 Tweet 12
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.