• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Discovery of a potential therapeutic target to combat trypanosomes

Bioengineer by Bioengineer
October 26, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Yaser Hashem's team at the Laboratoire Architecture et Réactivité de l'ARN at CNRS's has discovered a new potential therapeutic target – located in the ribosome – to combat trypanosomes parasites. Using cryo-electron microscopy[1], researchers at the Institut de Biologie Moléculaire et Cellulaire (CNRS/Université de Strasbourg) have analyzed the structure of these parasites in details and revealed one of their potential weak points, which has remained undetected until now. This discovery opens the path to the development of new safer therapies that are less toxic and more specific against trypanosomes, the parasites causing the Chagas disease and the African sleeping sickness. This study is published on October 26, 2017 in Structure.

Trypanosomes, more generally called kinetoplastids, are unicellular parasites responsible for numerous diseases of variable severity that can be lethal in the most severe cases. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major are probably the best known and cause the African sleeping sickness, Chagas disease and various Leishmaniasis, respectively.

Unlike bacteria, these organisms are eukaryotic cells that contain a nucleus, just like human cells. The similarities, though low, between animal cells and trypanosome cells complicate some therapeutic approaches. For example, an antibiotic targeting given molecular machinery in trypanosomes such as the ribosome could harm human cells at the same time. Until now, researchers thought that eukaryotic ribosomes (molecules involved in protein synthesis) had extremely similar structures from one species of eukaryotes to another, such as for instance the case of humans and trypanosomes, making them almost untouchable. Recent technological advances made possible the visualization of the structure of the ribosomes from trypanosomes at near-atomic resolutions, thus small structural differences to the human ribosomes can now be seen and become a potential therapeutic target.

Yaser Hashem's team has particularly looked at the architecture of the Trypanosoma cruzi ribosome. Using cryo-electron microscopy – involving sample cryogenization, it allows biological structures to be visualized in their native state – in combination with mass spectrometry – using the mass of each element to determine a precise protein composition – they have brought to light a protein specific to the ribosome of trypanosomes: KSRP (kinetoplastid-specific ribosomal protein). In addition to being specific to these parasites, KSPR is essential to their survival since inhibiting its activity leads to death of the parasites. The exact role of KSRP in the protein synthesis remains unsolved.

This discovery of KSRP gives us a glimpse into possible future medical research for the development of new therapies against trypanosomes parasites. Elucidating the structure of this new protein could lead to designing molecules that can interact with and inhibit its activity in a highly specific way, without interfering with host cells. So the possibility of targeting and inhibiting KSRP in parasites will represent a safer alternative, and especially a more efficient alternative, compared to current treatments that are extremely difficult and toxic.

###

[1] Ribosome of the parasite Trypanosoma cruzi. Illustration of the cytosolic ribosome in trypanosomes, purified from the T. cruzi parasite. Structure analysis by cryo-electron microscopy (middle) of the ribosome shows a new protein that is specific to this family of organisms. This protein has been named Kinetoplastid-specific ribosomal protein, or KSRP. In spite of its constant presence, this protein has passed unnoticed for years, even after the first publication of the high-resolution structure of this ribosome. © Yaser Hashem.

Media Contact

Alexiane Agullo
[email protected]
33-144-964-390

http://www.cnrs.fr

http://dx.doi.org/10.1016/j.str.2017.09.014

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.