• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study reveals key molecular link in major cell growth pathway

Bioengineer by Bioengineer
October 19, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cambridge, MA October 19, 2017. – A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which involves a critical cellular growth pathway known as mTOR, sheds light on a key aspect of cells' metabolism that involves tiny cellular compartments, called lysosomes, and harnesses a sophisticated technology for probing their biochemical content. The researchers' findings also implicate a new protein, SLC38A9, as a potential drug target in pancreatic cancer. Their study appears in the October 19th issue of the journal Cell.

"SLC38A9 is a really elegant protein that ties together two critical functions: activating a key pathway that controls cell growth and releasing the substrates, namely amino acids, needed for that growth," says senior author David Sabatini, a Member of Whitehead Institute, a professor of biology at Massachusetts Institute of Technology, and investigator with the Howard Hughes Medical Institute. "This was a totally unexpected finding, one that has important implications for human diseases, including pancreatic cancer."

Amino acids are one of the basic building blocks of life. When strung together in different combinations, they make a stunning array of proteins that carry out a variety of biological functions. Amino acids typically accumulate in two locations within cells: either freely floating within the cellular milieu or sequestered inside the lysosomes. For the last decade, Sabatini and his laboratory have studied the mechanisms by which cells sense the levels of amino acids at these sites and translate that information into subsequent go/no-go decisions about growth.

About three years ago, Sabatini and his colleagues, as well as other scientists, discovered SLC38A9, a protein embedded within the outer surface of lysosomes. Although its function was not entirely clear at the time, the researchers suspected it worked as a kind of sensor by reading out the levels of amino acids within lysosomes (specifically the amino acid arginine) and then activating downstream signals for growth.

To clarify how SLC38A9 works, the researchers, including the study's first authors Gregory Wyant and Monther Abu-Remaileh, eliminated or "knocked out" its function in cells. Since they hypothesized that it worked passively as an amino acid detector, they did not expect to see major changes in the levels of amino acids inside the lysosomes. But that is precisely what they found–especially for the so-called essential amino acids, which cannot be synthesized by the human body and therefore must be acquired from food. When SLC38A9 function was absent, the levels of these essential amino acids in lysosomes went up. And when Wyant and his colleagues boosted the protein's function to higher than normal levels, they observed the opposite effect.

"These were some big clues that SLC38A9 was doing more than we imagined, and they suggested that SLC38A9 could transport amino acids out of the lysosome," says Wyant, a graduate student in Sabatini's laboratory. The researchers confirmed this suspicions in follow-up experiments, which revealed that SLC38A9 is necessary for these essential amino acids, such as leucine, exit from lysosomes.

The amino acids needed to fuel cell growth are often recycled from intact proteins. That includes proteins found inside cells (through a process called autophagy), as well as those found outside (known as macropinocytosis). Both of these recycling streams converge on the lysosome, and, as Sabatini's team discovered, depend on SLC38A9 activity.

Pancreatic cancer cells are known to be highly dependent on the flow of amino acids from the lysosome. When the researchers knocked out SLC38A9 function in these cells, either in human cell lines or mouse models, tumor growth was significantly reduced. In contrast, normal cells appeared to be unaffected.

"Our results suggest that an inhibitor of SLC38A9 may provide a way to specifically target pancreatic cancer cells," says Sabatini.

Yet before such therapeutic possibilities can be explored, additional research on SLC38A9 is needed, including three-dimensional studies of the protein as well as a deeper understanding of its regulation. These will help the researchers develop a more complete picture of its molecular abilities–an important stepping-stone toward developing drugs that can disable it.

A key capability that underlies the new Cell study is the technical wherewithal to peer into lysosomes and analyze their biochemical makeup. These structures make up only a tiny fraction of the overall volume of a cell–just 2 percent–and their content is highly dynamic. Abu-Remaileh and Wyant pioneered a strategy for rapidly isolating lysosomes and detecting the metabolites within them.

"We would not have discovered the majority of these findings without this method," said Abu-Remaileh, a postdoctoral fellow in Sabatini's laboratory. "It is allowing us to address some really important and longstanding questions about the biology of lysosomes."

###

This work was supported by the National Institutes of Health (NIH, R01 CA103866, R01 CA129105, R37 AI47389, T32 GM007753, F30 CA189333, and F32CA210421), the Department of Defense (W81XWH-15-1-0230, W81XWH-15-1-0337), the European Molecular Biology Organization (EMBO), the Lustgarten Foundation, Stand Up To Cancer (SU2C), the National Cancer Institute (NCI, R01 CA168653, P30CA1405141), and Howard Hughes Medical Institute.

David Sabatini's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute investigator and a professor of biology at Massachusetts Institute of Technology.

Paper cited:

Wyant G, Abu-Remaileh M, et al. "mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient." Cell DOI 10.1016/j.cell.2017.09.046

Media Contact

Lisa Girard
[email protected]
617-452-4630
@WhiteheadInst

http://www.wi.mit.edu/index.html

http://dx.doi.org/10.1016/j.cell.2017.09.046

Share12Tweet7Share2ShareShareShare1

Related Posts

APA Poll Uncovers Widespread Stress from Societal Division and Loneliness Across the Nation

November 6, 2025
blank

Unraveling Tetracladium Spp.: Ecological Versatility Revealed

November 6, 2025

Ultrasound Assessment of Urinary Tract in Myelomeningocele Infants

November 6, 2025

Assessing Magnetic Stimulation for Spasticity in Cerebral Palsy

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

APA Poll Uncovers Widespread Stress from Societal Division and Loneliness Across the Nation

Unraveling Tetracladium Spp.: Ecological Versatility Revealed

Ultrasound Assessment of Urinary Tract in Myelomeningocele Infants

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.