• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New way to prevent genetically engineered and unaltered organisms from producing offspring

Bioengineer by Bioengineer
October 12, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A major obstacle to applying genetic engineering to benefit humans and the environment is the risk that organisms whose genes have been altered might produce offspring with their natural counterparts, releasing the novel genes into the wild. Now, researchers from the University of Minnesota's BioTechnology Institute have developed a promising way to prevent such interbreeding. The approach, called "synthetic incompatibility," effectively makes engineered organisms a separate species unable to produce viable offspring with their wild or domesticated relatives.

Synthetic incompatibility has applications in controlling or eradicating invasive species, crop pests and disease-carrying insects as well as preventing altered genes from escaping from genetically modified crops into other plant populations. The results were published online today in the journal Nature Communications.

The technology uses a new class of molecular tools called "programmable transcription factors" that make it possible to control which genes are turned on and which genes are turned off in an organism. If an engineered organism mates with a wild counterpart, the transcription factors render the offspring unable to survive by activating genes that cause their cells to die.

"This approach is particularly valuable because we do not introduce any toxic genes," said Maciej Maselko, a postdoctoral scholar from Smanski's lab who performed the work. "The genetic incompatibility results from genes already in the organism being turned on at the wrong place or time."

The research was done in brewer's yeast, but it can potentially be applied in insects, aquatic organisms and plants using a new gene editing technique known as CRISPR-Cas9. "Other methods to control gene flow, for example disrupting pollen or using a chemical to control reproduction in crops, are very species-specific and change how the crops are propagated. Our approach is expected work in virtually any sexually reproducing organism without changing how they are normally grown," said Michael Smanski, an assistant professor who led the study.

Synthetic incompatibility may make it possible to use crops to produce medications as well as food, feed and fuel. It also raises hope for using genetic engineering to control populations of invasive species or pests such as Asian carp in North America and disease-carrying mosquitoes throughout the world.

The next step, Smanski said, is to demonstrate the approach can work in organisms other than yeast "We're working on moving into model fish, insects, nematodes and plants," he said.

The University of Minnesota College of Biological Sciences seeks to improve human welfare and global conditions by advancing knowledge of the mechanisms of life and preparing students to create the biology of tomorrow.

Video Caption: Live-cell imaging videos showing the results of mating experiments in yeast. Offspring from wild-type yeast (left) grow and divide to form a micro-colony. Hybrid offspring between wild-type and a 'synthetic incompatibility' strain (right) are not viable.

###

Media Contact

Stephanie Xenos
[email protected]
612-624-8723
@UMNews

http://www.umn.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Genetic Variants Impact Milk and Reproduction in Buffalo

October 13, 2025
HSPB1 Alters Obesity Metabolism Differently by Sex

HSPB1 Alters Obesity Metabolism Differently by Sex

October 13, 2025

Unraveling the Mysteries of ‘Chemo Brain’

October 13, 2025

IL1B Gene Variants Linked to Schizophrenia in Iranians

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1230 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Research Sheds Light on Enhancing Support for Near-Death Experiencers

Engineering Mechanotransduction: Unlocking Cellular Communication

Genetic Variants Impact Milk and Reproduction in Buffalo

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.