• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UW wins $7 million grant to wean crops from nitrogen fertilizers

Bioengineer by Bioengineer
October 3, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

MADISON, Wisconsin — Researchers from the University of Wisconsin-Madison and the University of Florida will use a $7 million grant from the U.S. Department of Energy to study how some plants partner with bacteria to create usable nitrogen and to transfer this ability to the bioenergy crop poplar.

Plants that produce their own nitrogen would require less fertilizer, which would save farmers money and reduce the environmental pollution caused by fertilizer runoff into waterways.

The scientists will study how legumes — alfalfa, beans, and their cousins — evolved the ability to cooperate with bacteria to turn the nitrogen that is so abundant in the air into a form usable by plants. That process is called nitrogen fixation, and it takes place in specialized root organs called nodules that harbor soil bacteria. Recreating this ability in other plants has long been a goal of microbiologists and plant biologists interested in improving agriculture, says Jean-Michel Ané, a professor of bacteriology and agronomy and the lead researcher for the UW-Madison team.

The scientists will use the increasing availability of fully sequenced genomes and datasets on gene expression to investigate the evolutionary history of nitrogen fixation. By comparing closely related plants where one species retains this ability and another has lost it, the researchers can identify the most important genetic elements for nitrogen fixation to take place.

"Most of the time, evolution works by modifying preexisting mechanisms, and we want to find the preexisting mechanisms and key innovations that have been used by evolution to create these new associations between plants and bacteria," explains Ané. "It is very likely that plants that don't form nodules, like poplar, have these preexisting mechanisms that we could tweak to create nodules and allow these associations."

Ané's group will work with Sushmita Roy, a professor of biostatistics and medical informatics at the Wisconsin Institute for Discovery, to lead this evolutionary investigation. The UW-Madison researchers will then partner with colleagues at the University of Florida to begin testing groups of genes that could confer nodulation and bacterial symbiosis — and ultimately nitrogen fixation — on poplar.

Ané says that this project continues a long tradition of studying nitrogen fixation at UW-Madison.

"UW-Madison for decades has been a leader in research on nitrogen fixation, in biochemistry, in agronomy, and in bacteriology. There has been a really long history of research on the enzyme that performs nitrogen fixation," he says.

While the new grant aims to develop nitrogen fixation in poplar, food crops are also a target. Ané says that the Wisconsin Crop Innovation Center, a plant biotechnology center at UW-Madison, provides the expertise that would be required to translate findings from poplar research to cereals like corn, wheat and rice.

"My hope is that if we find something that works in poplar, then we have the capacity in the Wisconsin Crop Innovation Center, which is fairly unique in the United States, to apply those results to cereals, which I'm really excited about," says Ané.

###

–Eric Hamilton, (608) 263-1986, [email protected]

Media Contact

Jean-Michel Ané
[email protected]
608-262-6457
@UWMadScience

http://www.wisc.edu

http://news.wisc.edu/uw-wins-7-million-grant-to-wean-crops-from-nitrogen-fertilizers/

Share12Tweet7Share2ShareShareShare1

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

Revealing Tendon Changes from Rotator Cuff Tears

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.