• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers describe mechanism that underlies age-associated bone loss

Bioengineer by Bioengineer
September 22, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UAB

BIRMINGHAM, Ala. – A major health problem in older people is age-associated osteoporosis — the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the bone marrow.

University of Alabama at Birmingham researchers have now detailed an underlying mechanism leading to that osteoporosis. When this mechanism malfunctions, progenitor cells stop creating bone-producing cells, and instead create fat cells. Knowledge of this mechanism can provide targets in the search for novel bone-loss therapeutics to treat human osteoporosis with minimal side effects.

The UAB researchers found that a protein called Cbf-beta plays a critical role in maintaining the bone-producing cells. Furthermore, examination of aged mice showed dramatically reduced levels of Cbf-beta in bone marrow cells, as compared to younger mice.

Thus, they propose, maintaining Cbf-beta may be essential to preventing human age-associated osteoporosis that is due to elevated creation of fat cells.

Bone is a living tissue that constantly rebuilds. Bones need a constant new creation of cells specific to their tissue, including the bone-producing cells called osteoblasts. Osteoblasts live only about three months and do not divide.

The progenitor cells for osteoblasts are bone marrow mesenchymal stem cells. Besides osteoblasts, mesenchymal stem cells can also differentiate into the chondrocyte cells that make cartilage, the myocyte cells that help form muscles and the adipocytes, or fat cells. Thus, the same progenitor cell has four possible tracks of differentiation.

UAB researchers and colleagues focused on the molecular mechanism that controls the lineage commitment switch between the osteoblast and adipocyte tracks. Led by Yi-Ping Li, Ph.D., UAB professor of pathology, and Wei Chen, M.D., UAB associate professor of pathology, they investigated the key role played by Cbf-beta, or core-binding factor subunit beta.

Study details

The team led by Li and Chen generated three mouse models by deleting Cbf-beta at various stages of the osteoblast lineage. All three mouse models showed severe osteoporosis with accumulation of fat cells in the bone marrow, a pathology that resembles aged bone from enhanced adipocyte creation.

Bone marrow mesenchymal stem cells and bone cells from the skulls of Cbf-beta-deficient mice showed increased expression of adipocyte genes.

Looking at the mechanism downstream, the researchers found that the loss of Cbf-beta impeded the canonical Wnt signaling pathway, particularly through decreased Wnt10b expression. In nonmutant mice, they found that the protein complex composed of Cbf-beta and the Runx2 transcription factor binds to the Wnt10b promoter to drive Wnt10b expression. The Cbf-beta/Runx2 complex also inhibited expression of the enhancer protein C/EBP-alpha that promotes differentiation of adipocytes.

In addition, the researchers showed that Cbf-beta maintains the osteoblast lineage commitment in two ways — through the Wnt paracrine pathway to affect nearby cells and through endogenous signaling within the cell to suppress adipogenesis gene expression.

Altogether, this knowledge of the mechanism driven by Cbf-beta can help explain the imbalance in bone maintenance seen in older people.

###

Besides Li, corresponding author, and Chen, co-corresponding author, co-authors of the paper, "Cbf-beta governs osteoblast-adipocyte lineage commitment through enhancing beta-catenin signaling and suppressing adipogenesis gene expression," published in Proceedings of the National Academy of Sciences, are Mengrui Wu and Yiping Wang, UAB Department of Pathology; Jian-Zhong Shao, Zhejiang University, Hangzhou, China; and Jue Wang, UAB Department of Pathology.

Media Contact

Jeff Hansen
[email protected]
205-209-2355

http://www.uab.edu

Original Source

http://www.uab.edu/news/innovation/item/8714?utm_source=eurekaalert&utm_medium=referral&utm_campaign=&utm_content= http://dx.doi.org/10.1073/pnas.1619294114

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.