• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Russian scientists have studied the genes that allow cancer cells to resist drugs

Bioengineer by Bioengineer
September 22, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the People's Friendship University of Russia (RUDN University) have studied the mechanism of drug resistance for ovarian and breast cancer cells. They discovered that these cancer cells have redox-dependent mechanism which is tasked with sustaining their drug resistance. The results have been published in two articles in the journal of Free Radical Biology and Medicine.

Researchers from the RUDN University have found out one of reasons why chemotherapy (in particular, cisplatin) gradually stops affecting the cells of ovarian and breast tumors.

The authors study the biochemical mechanisms which allow tumor cells to develop resistance to antitumor drugs. During chemotherapy, when using certain drugs, the tumor cells are affected by toxic and oxidative stress, which stop their functioning. Sometime later, however, the cells "get used" to the drug action, which necessitates using stronger doses of the drug, which, in turn, negatively affects the patient's organism due to its toxic effect.

To stop the development of drug resistance, researchers need to learn operating the expression (the process of transferring hereditary information from DNA) of genes that control the cell viability. Many mechanisms allow it, including the redox processes which regulate, in particular, the cell antioxidant defense, which protects the cell against oxidative stress so that it could function properly. Without those "defender genes", it would be far easier for drugs to kill cancer cells. The researchers hope that the process could eventually be controlled.

Some of these genes' expression changes happen when human ovarian cancer (SKOV-3) cells and human breast cancer (MCF-7) cells develop resistance to an antitumor drug, cisplatin. Antitumor action of cisplatin is achieved in no small part by its pro-oxidant effect, meaning that it uses oxidative stress to destroy cells.

"As a result of development of the drug resistance in cancer cells, it was observed an increase in the gene expression encoding isoforms of thioredoxin and peroxiredoxin, which play an important role in the antioxidant defense system and the redox-dependent signaling. Significant increase in expression of such genes substantially contributes to forming a high level of antioxidant defense under development of cancer cell resistance to pro-oxidant action of cisplatin. Thus, the growth of expression of the Prx6 gene was observed in the resistant cells. The data obtained also points to a significant role of Prx1, Prx2 and Prx3 isoforms in the redox-dependent mechanisms of the resistance development of the cell lines", – Elena Kalinina, one of the article's authors, D.Sc., professor of T.T. Berezov Department of Biochemistry (RUDN University Institute of Medicine), told us.

The increase in gene expression points to the fact that isoforms of thioredoxin and peroxiredoxin participate in the development of cancer cell drug resistance. The researchers note that this effect can also be considered as a part of a redox-dependent adaptive antioxidant response to the oxidative stress caused by cisplatin's pro-oxidant action.

"The results obtained significantly expand our fundamental knowledge of the sum total of molecular events in the mechanisms of death and formation of drug resistance for cancer cells and of the role redox-dependent systems in these processes" – Elena Kalinina concluded.

These results, obtained by the researchers, in the future will enable us to improve the drug treatment programs for oncology patients.

###

Media Contact

Valeriya V. Antonova
[email protected]

http://www.rudn.ru/en/

http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.137

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Quantum-Boosted Transfer Learning for Underwater Species Classification

November 5, 2025
Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

November 5, 2025

Unveiling Europe’s Key Players in Regenerative Agriculture

November 5, 2025

Nonuniform Cooling Impacts Polymer Quality in 3D Printing

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Quantum-Boosted Transfer Learning for Underwater Species Classification

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

Unveiling Europe’s Key Players in Regenerative Agriculture

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.