• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Real or fake? Creating fingers to protect identities

Bioengineer by Bioengineer
September 20, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Michigan State University

Do you know how safe it is to use your finger as a security login? And have you wondered how your cell phone knows if your finger is real or a fake?

Michigan State University biometric expert Anil Jain and his team are working to answer these questions and solve the biggest problems facing fingerprint recognition systems today: how secure they are and how to determine whether the finger being used is actually a human finger.

In an effort to test and help solve this problem, Jain, a University Distinguished Professor, and doctoral student Joshua Engelsma have for the first time designed and created a fake finger containing multiple key properties of human skin. Commonly called a spoof, this fake finger has been used to test two of the predominant types of fingerprint readers to help determine their resilience to spoof attacks. Watch the finger being made in this video.

The fake fingers developed at MSU were created using a combination of carefully chosen materials, including conductive silicone, silicone thinner and pigments. In addition to determining the materials, the entire fabrication process, using a molding and casting technique, was designed and implemented by the team.

"What makes our design unique is that it mimics a real finger by incorporating basic properties of human skin," said Jain. "This new spoof has the proper mechanical, optical and electrical properties of a human finger. Compared to current fake fingers that only contain one or two of these properties, our new version could prove much more challenging to detect. It will help motivate designers to build better fingerprint readers and develop robust spoof-detection algorithms."

Developing more resilient fingerprint readers is important because they are now abundantly used for authentication in cell phones, computers, amusement parks, banks, airports, law enforcement, border security and more.

One specific way the synthetic fingers will be used is for testing the recognition accuracy between different types of fingerprint readers. The readers differ based on the type of sensors used to record the digital fingerprints, such as optical (using light rays to capture an image) or capacitive (using electrical current to create an image).

Currently, recognition accuracy declines when the same fingerprint taken using two different types of fingerprint readers is compared. For example, if a capacitive reader was used to capture a fingerprint, but an optical fingerprint reader was used later to authenticate that same fingerprint, it's less likely the print will be accurately identified. By using MSU's new spoof, companies could develop methods to improve the accuracy.

"Given their unique characteristics, we believe our fake fingers will be valuable to the fingerprint recognition community," said Jain. "Consumers need to know their fingerprints and identity are secure, and vendors and designers need to demonstrate to the consumers the technology is not only accurate but also resilient to spoof attacks."

Jain and his team have begun work on the next phase of this research: designing and building a fingerprint reader to test spoof-detection capabilities. Once ready, this low-cost reader could be easily built in a couple of hours by others in the fingerprint recognition community to test for real versus fake fingerprints. Jain's lab is additionally working on algorithms that will make this fingerprint reader more resilient to spoof presentation attacks.

###

A technical report has been submitted to arXiv. The paper will appear later this year in the IEEE Transactions on Information Forensics and Security journal. The study was conducted in collaboration with the National Institute of Standards and Technology.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Media Contact

Jessi Adler
[email protected]
517-355-6469
@MSUnews

http://msutoday.msu.edu/journalists/

Original Source

http://msutoday.msu.edu/news/2017/real-or-fake-creating-fingers-to-protect-identities/

Share14Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.