• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

DNA triggers shape-shifting in hydrogels, opening a new way to make ‘soft robots’

Bioengineer by Bioengineer
September 18, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Will Kirk/Johns Hopkins University

Biochemical engineers at the Johns Hopkins University have used sequences of DNA molecules to induce shape-changing in water-based gels, demonstrating a new tactic to produce "soft" robots and "smart" medical devices that do not rely on cumbersome wires, batteries or tethers.

The research advance, supervised by three faculty members in the university's Whiting School of Engineering, is detailed in the Sept. 15 issue of the journal Science.

The team members reported that their process used specific DNA sequences called "hairpins" to cause a centimeter-size hydrogel sample to swell to 100 times its original volume. The reaction was then halted by a different DNA sequence, dubbed a "terminator hairpin."

This approach could make it possible to weave moving parts into soft materials. The researchers have suggested that their process could someday play a role in creating smart materials, metamorphic devices, complex programmed actuators and autonomous robots with potential marine and medical applications.

To control how shape-shifting occurs in different parts of the target hydrogel, the researchers took a cue from the computer industry. They employed a photo-patterning technique similar to the one used to make tiny but intricate microchips. Various biochemical patterns embedded in different regions of the gel were designed to respond to specific DNA instructions to cause bending, folding or other responses.

"DNA sequences can be thought of as an analog to computer code," said David H. Gracias, a professor in the university's Department of Chemical and Biomolecular Engineering, and one of two senior authors of the Science article. "Just as computer software can direct specific tasks, DNA sequences can cause a material to bend or expand in a certain way at a specific site."

He added that this is not an unusual occurrence in nature. "Shape changing is very important in biology," Gracias said. "Think about how a caterpillar turns into butterfly."

The study's other senior author, Rebecca Schulman, is an assistant professor in the same department. Her research group designs intelligent materials and devices using techniques from DNA nanotechnology. "We've been fascinated by how living cells can use chemical signals to decide how to grow or move and use chemical energy to power themselves," she said. "We wanted to build machines that could act in a similar way. Our fabrication technology makes it possible to design very complicated devices in a range of sizes."

Thao (Vicky) Nguyen, a Johns Hopkins expert in the mechanics of polymers and biomaterials, provided key contributions to the research and was a co-author of the paper. "Using computer simulations, we developed a design rule to transform the large swelling of the hydrogel into the desired shape-change response," she said. Nguyen is an associate professor and the Marlin U. Zimmerman Jr. Faculty Scholar in the Department of Mechanical Engineering."

To confirm their ability to control which hydrogel targets were activated, the team members used DNA sequence-responsive flower-shaped hydrogels. In each "flower," two sets of petals were fabricated, and each set was designed to respond only to one of two different DNA sequences. When exposed to both sequences, all of the petals folded in response. But when they were exposed to just one of the sequences, only the petals matched to that sequence folded.

The team also fabricated hydrogel crab-shaped devices in which the antennae, claws and legs each curled up in in response to their matching DNA sequence. The crab devices remained in their actuated state for at least 60 days. The crab shape was selected in honor of the popular seafood served in the university's home state of Maryland.

The new technology detailed in the Science paper is protected by a provisional patent obtained through the university's Johns Hopkins Tech Ventures office.

###

The lead authors of the paper were doctoral students Angelo Cangialosi and ChangKyu Yoon. The co-authors included graduate students Jiayu Liu, Qi Huang and Jingkai Guo. Funding for the project came from US Army Research Office award W911NF-15-1-0490 and US Department of Energy award 221874.

Color images and a brief video clip available; contact Phil Sneiderman.

Related video here.

Media Contact

Phil Sneiderman
[email protected]
443-997-9907
@JohnsHopkins

http://www.jhu.edu

Original Source

http://releases.jhu.edu/2017/09/15/dna-triggers-shape-shifting-in-hydrogels-opening-a-new-way-to-make-soft-robots/ http://dx.doi.org/10.1126/science.aan3925

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.