• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bowel cancer study reveals impact of mutations on protein networks

Bioengineer by Bioengineer
August 29, 2017
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For the first time, scientists have completed a detailed study of many of the proteins in bowel cancer cells. Scientists from the Wellcome Trust Sanger Institute investigated the role proteins play in predicting how common mutations affect proteins in the cancer cells and also whether such proteins are important in predicting the cancer's response to treatment.

The results, published today (29 August) in Cell Reports give scientists a better picture of the cellular processes behind bowel cancer, and could enable researchers to predict which drugs would be effective in treating different bowel cancer patients.

Every day, 110 people are diagnosed with bowel cancer. There are around 41,300 new cases of the disease each year, and it is the fourth most common cancer in the UK*.

To understand the biology underlying cancer, scientists have traditionally studied all of the cancer genes — the genome — and all of the RNA — the transcriptome — in the cancer. However, a blindspot in research has been the study of all of the proteins — the proteome — and it is the proteins that are the building blocks of cell machinery.

In the new study, scientists conducted a very deep, detailed study of the proteins in bowel cancer to investigate whether proteins play a role in predicting the effect of different drugs against the cancer. The researchers analysed 9,000 proteins for each of 50 bowel cancer cell lines.

Dr Jyoti Choudhary, lead author from the Wellcome Trust Sanger Institute and The Institute of Cancer Research, London, said: "This study is the first detailed characterisation of colorectal cancer cell lines. It is important to include the proteome in cancer research because proteins are the building blocks of life, and networks of proteins working together are known to drive fundamental processes in cancer. The proteome contains unique information on cell organisation and function. Just studying the genome and transcriptome in the past has proven to be a blindspot in cancer research — but now including the proteome, we have the full picture."

The team were able to construct co-ordinated networks of proteins that drive bowel cancer. Researchers used CRISPR-Cas9 to disrupt, or knock out, a single gene that encoded a key protein, and see the effects on the proteins in the rest of its network.

Dr Theodoros Roumeliotis, first author from the Wellcome Trust Sanger Institute, said: "We discovered that silencing one gene has consequences on the rest of the network, lessening the amount of other proteins — like a ripple effect. We have identified many pathways within the protein network that could be targeted with drugs for bowel cancer, which we could only discover by studying the proteome."

In the study, the team tested 265 existing anti-cancer drugs on the 50 bowel cancer cell lines. Details of the genome and transcriptome have previously been used to predict which drugs would work in particular cancer cases, however the activity of some drugs could not be predicted.

By studying the proteome the team could predict drug responses that weren't explained by either genomics or transcriptomics.

Dr Ultan McDermott, senior author from the Wellcome Trust Sanger Institute, said: "This study is promising for bowel cancer patients. It confirms that this common cancer is actually composed of five different subtypes that may require different drug treatments, and surprisingly suggests that proteins may be more predictive for drug sensitivity than we have previously thought. In the future we may need to test the patient's genome, transcriptome and proteome to fully predict their response to cancer drugs and stratify patients for clinical trials more effectively. We are moving away from one size fits all towards personalised medicine."

###

Notes to Editors:

Sources

  • http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer#heading-Zero

Publication:

Theodoros Roumeliotis et al. (2017) Genomic determinants of protein abundance variation in colorectal cancer cells. Cell Reports. DOI: 10.1016/j.celrep.2017.08.010

Selected websites:

The Institute of Cancer Research, London, is one of the world's most influential cancer research organisations. Scientists and clinicians at The Institute of Cancer Research (ICR) are working every day to make a real impact on cancer patients' lives. Through its unique partnership with The Royal Marsden NHS Foundation Trust and 'bench-to-bedside' approach, the ICR is able to create and deliver results in a way that other institutions cannot. Together the two organisations are rated in the top four centres for cancer research and treatment globally.

The ICR has an outstanding record of achievement dating back more than 100 years. It provided the first convincing evidence that DNA damage is the basic cause of cancer, laying the foundation for the now universally accepted idea that cancer is a genetic disease. Today it is a world leader at identifying cancer-related genes and discovering new targeted drugs for personalised cancer treatment.

A college of the University of London, the ICR is the UK's top-ranked academic institution for research quality, and provides postgraduate higher education of international distinction. It has charitable status and relies on support from partner organisations, charities and the general public. The ICR's mission is to make the discoveries that defeat cancer. For more information visit http://www.icr.ac.uk

The Wellcome Trust Sanger Institute

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

Wellcome

Wellcome exists to improve health for everyone by helping great ideas to thrive. We're a global charitable foundation, both politically and financially independent. We support scientists and researchers, take on big problems, fuel imaginations and spark debate. http://www.wellcome.ac.uk

Media Contact

Emily Mobley
[email protected]
01-223-496-851
@sangerinstitute

http://www.sanger.ac.uk

http://dx.doi.org/10.1016/j.celrep.2017.08.010

Share12Tweet7Share2ShareShareShare1

Related Posts

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025
Overcoming Batch Effects in Single-Cell RNA-seq Datasets

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025

Unraveling CpG Island Methylation Through Read Bias Analysis

November 2, 2025

Unraveling Resistance Genes in Photorhabdus Bacteria

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mind Mapping Enhances Nursing Students’ Stress Relief and Performance

New Guidelines for Managing Thrombosis in Burn Patients

Compact DAC Leveraging Optical Kerr Effect Innovations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.