• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Popular immunotherapy target turns out to have a surprising buddy

Bioengineer by Bioengineer
August 16, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The Netherlands Cancer Institute

The majority of current cancer immunotherapies focus on PD-L1. This well studied protein turns out to be controlled by a partner, CMTM6, a previously unexplored molecule that is now suddenly also a potential therapeutic target. Researchers from the Netherlands Cancer Institute publish these findings in the leading journal Nature on August 16.

Immunotherapy is an exciting new way of treating cancer. The immune cells that circulate throughout the human body are supposed to attack and eliminate any cancer cells they encounter. However, some cancers have found a neat way to evade this destiny: they abuse a natural brake that is present on immune cells called T-cells. By binding to this so-called checkpoint using a protein called PD-L1, the cancer cell deactivates the T-cell's killing mechanism.

Because of its central role in controlling T cell activity, PD-L1 on cancer cells has become the center of attention in immunotherapy. Treatments that block this checkpoint are already used by patients with, for example, melanoma, lung cancer and renal cancer. In addition, hundreds of clinical studies that are ongoing worldwide investigate these compounds in many other cancer types.

Despite the fact that cancer patients already benefit from these blockers, much about PD-L1 remains unknown. For instance, why do some cancers carry more of this molecule than others? Researchers of the Netherlands Cancer Institute set out on a quest for clues and found an important one. "We always thought PD-L1 was a loner at the cancer cell surface, but it turns out that it binds to another protein", says professor Ton Schumacher. "This other protein, called CMTM6, stabilizes PD-L1 and thereby increases the capacity of cancer cells to inhibit the immune response." Schumacher's group carried out this project in close collaboration with colleagues Thijn Brummelkamp, Jannie Borst and Christian Blank at The Netherlands Cancer Institute, and Albert Heck at Utrecht University.

In addition to being highly relevant for understanding how the PD-L1-checkpoint works, this discovery might also have uncovered a new target for immunotherapy. Schumacher: "You can imagine that blocking CMTM6 could reactivate immune cells just like the currently used PD-L1 blockers can. Blocking both molecules could even be superior. It remains to be seen whether it will eventually deliver a therapy, but this is clearly something we are eager to test."

The newly identified companion of PD-L1 may also help clinicians predict whether patients will benefit from treatment with checkpoint inhibitors. Schumacher and his colleagues are currently investigating this in patients who are treated with the current PD-L1-blockers. "The amount of PD-L1 itself can predict treatment success to a limited extent and we have some hope that CMTM6 can improve the precision of this prediction."

Interestingly, a group of Australian and English researchers publish a very similar story about CMTM6 in the same edition of Nature. Schumacher: "Our colleagues used different methods to discover the same process. I think we were both quite happy to see this independent validation."

###

Media Contact

Sanne Hijlkema
[email protected]
31-205-122-850

http://www.nki.nl

Related Journal Article

http://dx.doi.org/10.1038/nature23669

Share12Tweet7Share2ShareShareShare1

Related Posts

SARS-CoV-2 Dynamics in MHCI-Mismatched Lung Transplant

September 16, 2025
blank

Donor Milk Pasteurization Shapes Preterm Infant Microbiome

September 16, 2025

New Research Uncovers How Message Types Inspire People to Take Conservation Action

September 16, 2025

Increased Brain Amyloid Found in Older Adults with Parkinson’s Disease Without Dementia

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SARS-CoV-2 Dynamics in MHCI-Mismatched Lung Transplant

Donor Milk Pasteurization Shapes Preterm Infant Microbiome

New Research Uncovers How Message Types Inspire People to Take Conservation Action

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.