• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Vapor harvesting gets the edge

Bioengineer by Bioengineer
August 14, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © 2017 KAUST

Water harvesting is an age-old technique of collecting atmospheric water vapor. Researchers are looking to nature to learn about the efficiency of surfaces used to collect the vapor.

Scientists have long assumed that the capacity of water-harvesting surfaces to interact with water–their wettability–should be a crucial factor in their performance, but this latest research at KAUST reveals a surprise.

"Whether a surface 'loves' or 'hates' water does not matter that much for its final water-harvesting performance," says Peng Wang of the KAUST Water Desalination and Reuse Center. Wang's use of the terms love and hate reflects the technical distinction between surfaces that are hydrophilic (water loving) and hydrophobic (water hating).

Research at KAUST aims to improve the efficiency of collection methods for water harvesting–an important source of drinking water in regions with little rainfall but high humidity–through considering the influence of attributes of different surfaces, including wettability and edge effect. Wang performed experimental and theoretical studies on the effect of surface wettability, edge structures and wettability hysteresis working with his Ph.D. student Yong Jin and Lianbin Zhang, a former researcher from his KAUST lab, who is now at Huazhong University in China.

Rather than the surface's wettability properties being paramount, the team's research showed that variation in the edge of the surface structures significantly affects water-droplet formation, and that rough-edged structures mimicking some found in nature are highly effective.

"Trying to develop artificial surfaces like the surface of a cactus seems a good way to go," says Wang. His earlier work also explored the water-catching power of the exoskeleton of desert beetles.

Water harvesting can be achieved passively by either exposing a surface to humid air or actively, for example, by cooling the surface to encourage water condensation–similar to the operation of a domestic dehumidifier. Passive harvesting has a long history, with suspended fabrics used in several cultures to gather water from the air.

"The field of water harvesting is both mature and primitive at the same time," explains Wang. "It is mature because of its ancient origins yet primitive because of the limited understanding of the efficiency of different surfaces."

The team's future plans in this field will complement their related interest in using solar energy to evaporate seawater and wastewater to then condense purified liquid water from the resulting vapor. "The knowledge we are obtaining from studying atmospheric water harvesting will definitely be a help for other research," says Wang.

###

Media Contact

Michelle D'Antoni
[email protected]

http://kaust.edu.sa/

Original Source

https://discovery.kaust.edu.sa/en/article/392/vapor-harvesting-gets-the-edge http://dx.doi.org/10.1002/gch2.201700019

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Histopathology in Peste des Petits Ruminants

Exploring Histopathology in Peste des Petits Ruminants

August 28, 2025
Lipid Metabolism Key to Oat’s Heat Stress Response

Lipid Metabolism Key to Oat’s Heat Stress Response

August 28, 2025

DNA Sequence Insights Uncover Evolutionary Patterns in Regulation

August 28, 2025

Spider Lures Prey with Trapped Fireflies Acting as Glowing Bait

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advances and Future of Magnetic Hyperthermia Cancer Therapy

Optimal Workout Levels Boost Sperm Health: Study Insights

Pediatric Interventional Radiology in Ethiopia: Status and Challenges

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.