• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Extreme melt season leads to decade-long ecosystem changes in Antarctica’s Dry Valleys

Bioengineer by Bioengineer
August 8, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Peter Rejcek

An abnormal season of intense glacial melt in 2002 triggered multiple distinct changes in the physical and biological characteristics of Antarctica's McMurdo Dry Valleys over the ensuing decade, new research funded by the National Science Foundation (NSF) shows.

The findings suggest that abrupt, short-lived climate events can cause long-term alterations in polar regions that unfold over the span of several years and subsequently change the overall trajectory of an ecosystem.

The new research appears today in the journal Nature Ecology and Evolution.

Paul Cutler, the NSF program officer for the two Long-Term Ecological Research (LTER) sites in Antarctica, noted that these results underscore the value of gathering data over decades.

"The natural world operates in non-linear ways and on many different time scales, from daily cycles to processes that take centuries," said Cutler. "LTERs are instrumental in measuring and deciphering these complexities in order to inform basic understanding of ecosystem functioning and to refine predictions of the future of critical ecosystems, particularly in areas like the Dry Valleys, which maintain an ancient, but potentially delicate ecological balance."

The McMurdo Dry Valleys are the largest ice-free region of Antarctica and are considered a polar desert environment due to their low humidity and scarce precipitation. Now in its 25th year, NSF's McMurdo Dry Valleys Long-Term Ecological Research (LTER) project has provided a continuous multi-decade record of atmospheric and ecological data at the research site.

Between 1987 and 2000, the Dry Valleys experienced a period of cooling, during which mean summer temperatures steadily declined while solar radiation gradually increased. The trend resulted in expected changes to most biological variables, including decreased streamflow and increased thickness of permanent ice cover on lakes.

In 2002, however, the Dry Valleys experienced an abnormally warm and sunny summer season, triggering the greatest amount of glacial meltwater since 1969. The event prompted numerous changes in the lakes, streams and soils of the region over the following decade.

"This flood year was the pivot point," said Michael Gooseff, a fellow at the University of Colorado Boulder's Institute of Arctic and Alpine Research (INSTAAR) and the lead investigator for the Dry Valleys LTER project. "Prior to that, all physical and biological indicators had been moving in the same direction."

Instead of a tightly correlated change, however, biological responses to the 2002 season varied and, in some cases, lagged behind by years. For example, the researchers found that one previously declining dominant soil species increased slowly following the flood year. Another species responded more positively to the moisture pulse and saw population increases carry over into subsequent summers.

"Long-term records are essential to understand how and when communities of organisms might respond together or as individual species when facing abrupt changes in their environment," said Ross Virginia, director of the Institute of Arctic Studies at Dartmouth College and a co-author of the study. "As climate changes in the Dry Valleys, these kinds of biotic responses and interactions will shape its future biodiversity."

The findings suggest that significant transformations of Antarctic ecosystems are underway now and will continue to be affected by future climate events.

"A single extreme melt season led to an asynchronous pattern," said Gooseff, who is also an associate professor in the university's Department of Civil, Environmental and Architectural Engineering. "It may be the abrupt, short-lived events that occur in response to climate change that cause long-term changes to physical and biological aspects of polar ecosystems."

###

Co-authors of the new research include Diane McKnight and Eric Sokol of University of Colorado Boulder and INSTAAR; John Barrett of Virginia Tech University; Byron Adams of Brigham Young University; Peter Doran of Louisiana State University; Andrew Fountain of Portland State University; William Lyons of Ohio State University; John Priscu of Montana State University; Cristina Takacs-Vesbach of the University of New Mexico; Martijn Vandegehuchte and Diana Wall of Colorado State University.

Media Contact

Peter West
[email protected]
@NSF

http://www.nsf.gov

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Prophages in Enterococcus faecium: Diversity & Resistance

October 29, 2025
“‘Broken’ Genes Key to Marsupial Fur Color Variation”

“‘Broken’ Genes Key to Marsupial Fur Color Variation”

October 28, 2025

Gymnema sylvestre’s Antifungal Compounds and Optimization

October 28, 2025

Sorghum Polyamine Oxidase Genes: Drought Resilience Insights

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing MMSPE: Validity and Reliability in Indonesian Kids

Optimizing Ovarian Cancer Treatment with CT Radiomics

Five-Year Study on Pediatric Busulfan Drug Monitoring

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.