• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Good cellular neighbors combat incipient cancers

Bioengineer by Bioengineer
August 2, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Yale University

Scientists have spent decades studying the nature of tumor cells, but few have looked to see what was happening in the surrounding tissue.

When Yale researchers took a closer look at skin cells, they discovered the unaffected neighbor cells are not helplessly awaiting invasion of cancer cells but acting like cellular police, actively correcting tissue flaws created by their aberrant neighbors, the investigators report Aug. 2 in the journal Nature.

"The normal cells can even corral and escort mutant cells out of the tissue and clean up the mess the mutant cells left behind, in order to keep the tissue healthy and functional," said Samara Brown. She and fellow graduate student Cristiana Pineda are lead authors of the study.

"We found a dynamic, active process of correction conserved across different mutational systems and even a mutation-independent model," Pineda added.

The Yale team studied damaged cells or activated oncogenes in mouse tissue and used new live-imaging technology to study behavior of surrounding cells. They found these wild-type cells were necessary for the elimination of tumors, which progressed dramatically in their absence, and for correcting aberrations caused by damaged cells.

Primary funding for the study was provided by the National Institutes of Health and New York Stem Cell Foundation.

Brown and Pineda work in the lab of senior author Valentina Greco, associate professor of genetics, cell biology, and dermatology.

###

Media Contact

Bill Hathaway
[email protected]
203-432-1322
@yale

http://www.yale.edu

Related Journal Article

http://dx.doi.org/10.1038/nature23304.

Share12Tweet7Share2ShareShareShare1

Related Posts

Sanger vs. Next-Gen Sequencing of WWII Victims

September 15, 2025
Next-Gen LED Therapeutics: Challenges and Opportunities

Next-Gen LED Therapeutics: Challenges and Opportunities

September 15, 2025

Impact of Electrode Material on Radish Germination

September 14, 2025

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

September 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sanger vs. Next-Gen Sequencing of WWII Victims

Next-Gen LED Therapeutics: Challenges and Opportunities

Impact of Electrode Material on Radish Germination

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.