• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cell senescence is regulated by innate DNA sensing

Bioengineer by Bioengineer
July 31, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cells in the body or in cultures eventually stop replicating. This phenomenon is called "senescence" and is triggered by shortening of telomeres, oxidative stress or genetic damage to the cells, either acute or simply due to the cell growing "old". Understanding the causes and impact of senescence can give us deep insights into the development of cancer and ageing. EPFL scientists have now discovered that a DNA-sensing mechanism of the innate immune system – which is pivotal for the immediate defense against pathogens — controls cellular senescence. The work is published in Nature Cell Biology, and highlights potential novel anti-tumor and perhaps anti-ageing strategies.

When cells senesce, they undergo profound changes, including the secretion of several inflammation-mediating proteins (cytokines, chemokines, extracellular-matrix proteins, growth factors). The production of this "senescence-associated secretory phenotype" controls a number of biological processes such as wound healing and tissue repair, but also tumor formation and some age-related disorders. But although we know how senescence increases the activity of the genes for these proteins, we know very little about how the entire process begins in the first place.

The lab of Andrea Ablasser at EPFL found that senescing cells use a mechanism of the innate immune system to regulate the secretion of inflammation-mediating molecules. The innate immune system includes fast-acting but non-specialized cells (macrophages, neutrophils, mast cells etc.) that provide the first line of defense against the millions of potential pathogens to which humans are constantly exposed.

The innate immune cells use a host of pattern recognition receptors to sense and identify foreign parts of an invading pathogen, such as the DNA of a virus. DNA-sensing is accomplished through a two-receptor system comprising an enzyme called cGAS and an adaptor molecule called STING. Once activated, the cGAS-STING pathway triggers the production of inflammatory proteins that help fight off the pathogen.

Unexpectedly, the researchers now found that senescent cells in the body use the cGAS-STING pathway to regulate and facilitate their secretion of inflammation mediators. But in the context of senescent cells, it is the cell's own DNA that activates cGAS because of defects in the nuclear envelope integrity.

Examining the relevance of this fundamental mechanism, the study found that the cGAS-controlled secretion of cytokines appears to play a role in various contexts of senescence such oxidative stress, oncogene signaling and irradiation. The scientists also observed that at least irradiation and oncogene activation exert these actions through cGAS-STING in vivo as well.

The study shows that DNA sensing through the cGAS-STING pathway is an important regulator of senescence and the release of inflammatory mediators, and could also serve as surveillance system that protects the organism against neoplastic cells, which opens up new insights for our understanding of the development of cancer. Moreover, since the inflammatory response of senescent cells also promotes ageing, the cGAS-STING pathway could serve as new drug target to tackle age-related diseases.

###

Collaborating institutes

EPFL Core Facilities (BBCF, BIOp, CPG, FCCF, GECF)
University Hospital Tübingen
University of Oxford

Funding

Swiss National Science Foundation
Gebert-Rüf Stiftung
European Molecular Biology Organization (EMBO)

Reference

Selene Glück, Baptiste Guey, Muhammet Fatih Gulen, Katharina Wolter, Tae-Won Kang, Niklas Arndt Schmacke, Anne Bridgeman, Jan Rehwinkel, Lars Zender, Andrea Ablasser. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nature Cell Biology 31 July 2017. DOI: 10.1038/ncb3586

Media Contact

Nik Papageorgiou
[email protected]
41-216-932-105
@EPFL_en

http://www.epfl.ch/index.en.html

http://dx.doi.org/10.1038/ncb3586

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.