• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A molecule for proper neural wiring in the cerebellum

Bioengineer by Bioengineer
July 28, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Miyazaki T. et al., Proceedings of the National Academy of Sciences of the United States of America, June 27, 2017.

A molecule produced by insulating glial cells facilitates the functional wiring of brain cells involved in motor coordination.

Researchers at Hokkaido University have found that the molecule "L-gutamate/L-aspartate transporter" (GLAST) plays an essential role in establishing and maintaining proper neural wiring of Purkinje cells in the cerebellum.

Purkinje cells are among the largest nerve cells in the brain. They are present in the cerebellum, a small structure in the back of the brain influencing motor coordination. They are mainly hooked up to the nervous system by means of two distinct types of nerve fibers, "parallel fibers" and "climbing fibers." Those fibers connect to different part of Purkinje cell dendrites, or the branches projecting from the cell body, segregating their territories.

GLAST is a molecule produced by specialized insulating cells, called Bergmann glia, that wrap around Purkinje cell synapses (a synapse is the structure connecting one nerve cell to another). GLAST's role is to remove excess glutamate, a neurotransmitter used by parallel and climbing fibers to send signals to Purkinje cells. This facilitates a "high-fidelity" signal, by allowing the right amount of glutamate to reach the targeted nerve cell without spilling over onto its neighbors. However, little is known about GLAST's role in the development of neural circuits.

Professor Masahiko Watanabe of Hokkaido University and his colleagues in Japan compared the wiring of Purkinje cells in normal mice and mutant mice lacking GLAST. The wiring of Purkinje cells in the mutant mice was laden with abnormalities.

Each Purkinje cell is normally innervated by a single climbing fiber as a result of competition between the fibers during development. However, in the mutant mice, Purkinje cells were innervated by multiple climbing fibers, which apparently caused the Purkinje cells to be atypically excited.

Parallel fibers were also affected. They robustly increased the number of connections with Purkinje cells, impairing the territorial segregation between climbing fibers and parallel fibers. Furthermore, in the knockout mice, Bergmann glial cells were improperly wrapped around the Purkinje cells, exposing them to the external environment.

In a different experiment, they also found that functional blockade of GLAST in normal adult mice results in similar abnormalities as seen in the knockout mice.

"We have shown that the glutamate transporter, GLAST, plays important roles in establishing and maintaining proper nerve wiring and insulation in the cerebellum. Further investigation should reveal how GLAST's function is related to the plasticity of the neural network," says Masahiko Watanabe.

###

Media Contact

Naoki Namba
81-117-062-185
@hokkaido_uni

https://www.global.hokudai.ac.jp/

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

WIP Family Uncovered in Foxtail Millet’s Growth Regulation

October 23, 2025
blank

Unlocking Growth Traits in Eastern Oysters: A Genomic Study

October 23, 2025

Traffic noise and land clearance threaten bird survival, study reveals

October 23, 2025

Endangered Kangaroo Island Ground-Dweller Spotted in Trees: A Surprising Discovery

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1276 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    307 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    159 shares
    Share 64 Tweet 40
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Second-Gen Sequencing in Lung Cancer Immunotherapy

Tailoring Treatments: Pharmacokinetics of Molecules in Rheumatoid Arthritis

New Model Predicts Caregiver Distress in Dementia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.