• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel thermal ablation system for transdermal drug delivery

Bioengineer by Bioengineer
July 27, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Professor Takuro Niidome

Many diseases are treated with protein-based drugs. However, due to the size of the molecules, the only effective delivery method is through injection, which can suffer from low patient compliance. Furthermore, many of these types of drugs require multiple treatments that can take hours to complete, as is the case with rheumatoid arthritis. New drug delivery methods should be discovered and implemented to relieve patients of this taxing and expensive experience.

In an attempt to produce a better drug delivery system, researchers from Kumamoto University in Japan focused on a transdermal protein delivery system. There are multiple techniques currently being studied for this type of drug delivery mechanism, from microneedles to iontophoresis (transdermal drug delivery via electric current), but the Kumamoto University researchers designed to improve a technique called transdermal thermal ablation. This technique increases the permeability of the skin by heating and removing the first skin layer, the stratum corneum (SC). The difficulty is performing this without damaging deeper skin layers.

The researchers used a combination of transparent gel patches, gold nanorods, and near-infrared (NIR) light to create a unique thermal ablation system for transdermal drug delivery. They added fluorescently labeled ovalbumin (FITC-OVA) to the patches to determine the extent of protein translocation after NIR irradiation on murine skin. Both in vivo and in vitro experiments were performed using gel patches with gold nanorods, gel patches without gold nanorods (control 1), and gel patches with gold nanorods but without any form of irradiation (control 2). The two controls did not produce any thermal ablation effect on the skin, but the NIR irradiated gold nanorod patches heated the skin to around 43 degrees Celsius. This resulted in significant protein translocation for the in vitro experiment and moderate translocation for the in vivo experiment. The difference between these two results was likely due to a loosening of the skin cells after freezing for the in vitro experiment.

"Our experiments have shown that the photothermal effect on gold nanorods by irradiation of near-infrared light causes the skin to heat up and become more permeable," said Professor Takuro Niidome, leader of the research project. "It should be noted that our technique has yet to deliver any specific protein drugs, but we are confident that the research will contribute to the development of effective transdermal delivery systems."

This research can be found online in Elsevier's European Journal of Pharmaceutics and Biopharmaceutics.

###

[Reference]

Haine, A. T.; Koga, Y.; Hashimoto, Y.; Higashi, T.; Motoyama, K.; Arima, H. & Niidome, T., Enhancement of transdermal protein delivery by photothermal effect of gold nanorods coated on polysaccharide-based hydrogel, European Journal of Pharmaceutics and Biopharmaceutics, Elsevier BV, 2017, 119, 91-95. DOI: 10.1016/j.ejpb.2017.06.005

Media Contact

J. Sanderson
[email protected]

http://ewww.kumamoto-u.ac.jp/en/news/

Original Source

http://www.sciencedirect.com/science/article/pii/S0939641117306847 http://dx.doi.org/10.1016/j.ejpb.2017.06.005

Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.