• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Understanding cell segregation mechanisms which help prevent cancer spread

Bioengineer by Bioengineer
July 26, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: David Wilkinson

Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

In order for organs to develop properly, cells from different tissues need to be separated by sharp borders that persist throughout our lifetime. The mechanisms that keep cells in the right place are lost in cancer cells, allowing them to invade other cell populations and spread to different tissues.

Researchers at the Francis Crick Institute have worked out how major players in border formation between tissues — cell-surface proteins called ephrins and their Eph receptors — keep cells in the right places. The findings are published in The Journal of the Royal Society Interface.

In many tissues, ephrins are present in one cell population and Eph receptors in the other. When these cells come into contact, ephrins bind to their receptors, triggering signalling inside both cells that stops them from mixing. However, it was not previously known whether this was because cells preferentially stick to 'like' cells of the same type, if they repelled other 'non-like' cells, or both.

To investigate this problem, the team labelled ephrin-expressing and receptor-expressing cells with different fluorescent colours, mixed them together, and observed their interactions under a microscope as the two populations separated out.

The team used their measurements to develop a computer model of the cell interactions to help understand how they become organised.

"We found that when cells of different types contacted each other, they rebounded in opposite directions," says co-author Anaïs Khuong, Postdoctoral Training Fellow at the Francis Crick Institute. "Our simulations suggest that this repulsion is the main force separating the cell types to form sharp borders."

The team also found that when they reduced the expression of a molecule called N-cadherin that keeps 'like' cells together, the different cell types did not separate as normal. Instead, 'like' cells repelled each other and broke into small clusters that mixed with 'non-like' cells. These findings were replicated in the computer simulations and suggest that under normal circumstances, N-cadherin suppresses repulsion between 'like' cells. This suppression is vital for 'like' cells to stick together, and to prevent them from invading 'non-like' cells enabling a sharp border to form between different cell populations.

Co-senior author David Wilkinson, Group Leader of the Neural Development Lab at the Francis Crick Institute, says: "This collaborative research between mathematical biology and developmental biology has given us new insights into how ephrins and their receptors work to keep cells in the right places, and the critical role of N-cadherin to keep like-cells together. Understanding how this signalling works will help us to figure out what might be going wrong in cancer cells to allow them to cross borders and spread through the body. Scientists are looking at potential therapeutic effects of targeting ephrin-signalling in tumours."

Co-senior author Willie Taylor, Group Leader of the Computational Cell and Molecular Biology Lab at the Francis Crick Institute, says "The collaborative ethos of the Institute brought about this project, when we realised that simulations that I had developed for interactions of molecules could be adapted to model cell interactions. The environment at the Crick is enhancing such collaboration between labs."

The paper 'Cell segregation and border sharpening by Eph receptor: ephrin-mediated heterotypic repulsion' is published in The Journal of the Royal Society Interface.

###

Media Contact

Greta Keenan
[email protected]
020-379-65252
@thecrick

http://www.crick.ac.uk

Original Source

https://www.crick.ac.uk/news/science-news/2017/07/26/understanding-cell-segregation-mechanisms-which-help-prevent-cancer-spread/ http://dx.doi.org/10.1098/rsif.2017.0338

Share12Tweet7Share2ShareShareShare1

Related Posts

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

September 11, 2025
blank

Complete Chloroplast Genome of Cyathea delgadii Revealed

September 11, 2025

Scientist, Advocate, and Entrepreneur Lucy Shapiro Honored with Lasker-Koshland Special Achievement Award

September 11, 2025

Zoology Spotlight: Octopuses Always Use Their Best Arm for Every Task

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addiction-like Eating Tied to Deprivation and BMI

Mosquito Gene Response Reveals Japanese Encephalitis Entry

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.