• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Shooting the achilles heel of nervous system cancers

Bioengineer by Bioengineer
July 20, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Yolanda Sanchez

LEBANON, N.H. – Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center devised a strategy to target cancer cells while sparing normal cells. This strategy capitalizes on the fact that processes that allow a cell to form a tumor, such as loss or mutation of the tumor suppressor NF1, also expose vulnerabilities in the tumor cell that are absent in normal cells. These vulnerabilities are known as the "Achilles heel" of cancer cells. Although much is known about the mutations that cause a cell to become malignant, little is known about the vulnerabilities of cells with these mutations. The team has published new findings on this Achilles heel found in cells that have been rewired by NF1 loss.

Mutation of the tumor suppressor, NF1 or loss of the NF1 protein is a possible cause of aggressive neurological cancers including glioblastoma (GBM) and has also been observed in lung adenocarcinoma and ovarian cancer among other sporadic cancers. Led by Norris Cotton Cancer Center's Yolanda Sanchez, PhD, a multi-institutional research team has developed and conducted a novel synthetic lethality screen to discover molecules that target genetically modified yeast lacking NF1. Yeast is uniquely amenable to high throughput drug screening because the pathways are conserved. The team was therefore able to screen thousands of drug-like compounds for ones that would kill the NF1-deficient cells while sparing the wild-type (normal) cells, and sorted out the lead compounds that were successful in doing so. One of the lead candidates that was observed to be lethal with this particular mutation is called Y100. Y100 treatment disrupted growth of tumor cells and induced the formation of superoxides that caused the death of NF1-deficient cancer cells.

The team's findings, "Exploiting mitochondrial and metabolic homeostasis as a vulnerability in NF1 deficient cells" has recently been published in Oncotarget. "In this paper we describe the mechanisms by which one of our top leads, Y100, targets NF1-deficient cells," explains Sanchez. "Mutations that drive cells to become malignant, including loss of the tumor suppressor NF1, rewire cells' metabolism, which makes them uniquely sensitive to a process called oxidative stress. Our data so far suggest that Y100 can exploit this vulnerability in cells that lack the NF1 tumor suppressor." The team hypothesizes that the use of Y100 and molecules with related mechanisms of action represent a feasible therapeutic strategy for targeting NF1 deficient cells.

Based on the success to date, the team is optimistically looking ahead to trials. "Our long-term objective is to work with our board of scientific and clinical advisors to design Phase 0/1 trials with agents that are efficacious at shrinking the tumors in 'avatar' models," said Sanchez. "In order to test the efficacy of Y100 against GBM tumors in whole organisms we first need to examine the toxicity of Y100. To test the efficacy of Y100 we will use 'avatars,' which are mice carrying identical copies of patients' GBM tumors. When we identify the cellular target of Y100, then we can find additional inhibitors or drugs to test in the avatar models." Ongoing research will be carried out in collaboration with P. Jack Hoopes, DVM, and the Neuro-Oncology team at Norris Cotton Cancer Center (NCCC). The team is also working to find the cellular target of this small molecule in collaboration with the Scott Gerber, PhD, Laboratory at NCCC. Research utilized the Genomics and Molecular Biology and DartLab Flow Cytometry Shared Resources at Dartmouth.

Although the work published here is early in the drug discovery process, the multidisciplinary team expects that by following up on these discoveries they will identify new targets and therapeutic leads for the treatment of aggressive nervous system cancers driven by NF1 loss, including GBM.

###

Yolanda Sanchez, PhD, is Associate Director for Basic Sciences at Norris Cotton Cancer Center and Associate Professor of Molecular and Systems Biology at Dartmouth's Geisel School of Medicine. The research team includes a leader in the NF1 field Nancy Ratner, PhD, of Cincinnati Children's Hospital and Medical Center.

About Norris Cotton Cancer Center at Dartmouth-Hitchcock

Norris Cotton Cancer Center combines advanced cancer research at Dartmouth's Geisel School of Medicine with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center in Lebanon, NH, at Dartmouth-Hitchcock regional locations in Manchester, Nashua and Keene, NH, and St. Johnsbury, VT, and at partner hospitals throughout New Hampshire and Vermont. It is one of 48 centers nationwide to earn the National Cancer Institute's "Comprehensive Cancer Center" designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at cancer.dartmouth.edu.

Media Contact

Jaime Peyton
[email protected]
603-653-3615

http://www.dhmc.org/webpage.cfm?org_id=796

Original Source

http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path[]=19335&path[]=61858 http://dx.doi.org/10.18632/oncotarget.19335

Share12Tweet8Share2ShareShareShare2

Related Posts

Link Between Halquinol and Antibiotic Resistance Explored

Link Between Halquinol and Antibiotic Resistance Explored

August 22, 2025
Perilla frutescens acuta Stops Allergy by Blocking Key Pathways

Perilla frutescens acuta Stops Allergy by Blocking Key Pathways

August 22, 2025

Tracking the Language of Molecules

August 22, 2025

Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nutrition Education Prevents Malnutrition in Radiotherapy

Scientists Unveil Breakthrough Technique for Large-Scale Metabolite Analysis in Biological Samples

Metabolic Profiling Reveals RCC Drug Response

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.