• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Parasitic worms may lead to agricultural stem cell breakthrough

Bioengineer by Bioengineer
July 19, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Professor Shinichiro Sawa

The plant parasitic nematode is an agricultural pest that has no fundamental countermeasures and requires the development of resistant plant varieties or pesticides. This parasitic pest creates a nest called a "gall" on the roots of agricultural crops which reduces the ability of a plant to absorb nutrition. Once this pest takes hold, a crop may die or its value may be significantly reduced. Furthermore, once infected with this troublesome pest, it is impossible to grow crops in the same field for several years. Agricultural damage caused by this nematode has recently been expanding around the world.

Researchers at Kumamoto University in Japan in collaboration with Universidad de Castilla-La Mancha in Spain analyzed the reactions of plants parasitized by plant parasitic nematodes and found that plant stem cells become activated to form galls. In other words, the researchers showed that plant parasitic nematodes are able to effectively manipulate plant stem cells to make their nests (galls) in the plant roots. In the future, this finding is expected to contribute to the reduction of nematode damage by improving crop varieties.

Background: The nematode, an insect pest.

Many microorganisms live in the soil and plants generally have no problems interacting with them. However, some microorganisms, such as plant parasitic nematodes, cause significant harm to plants. When these nematodes invade or infect a plant, a rounded nest called a gall is formed on the roots. The nematode then absorbs nutrients from the plant through the gall which allows it to grow and produce many eggs. Until now, little was known about why plants create these nematode nests after infestation.

Hypothesis: Stem cell manipulation

Researchers designed an experiment using the plant Arabidopsis thaliana that analyzed its response to being parasitized by nematodes. Although A. thaliana's roots are very small and difficult to evaluate, they succeeded in obtaining highly accurate results. They acquired a large amount of genetic data by using a next-generation sequencer and performed several statistical analyses.

As a result, the researchers found that plant stem cell function seemed to be abnormally activated by nematode infestation. Although many of the higher plants have a small amount of stem cells at the boundary between xylem and phloem cells, the activity of these stem cells is strictly controlled. However, when these stem cells start growing out of control, abnormal tissues are formed, just like cancer, and it becomes impossible for the plant to form a normal shape. In the galls, the researchers found that the activity control of the stem cells, which should be held very precisely under normal conditions, exhibited runaway conditions when infected by the parasitic worms. In other words, they thought that the nematodes manipulated the plant stem cells to build their nests.

Verification: Visual verification of the stem cells

To verify their hypothesis, researchers stained the stem cells blue and observed the plants from the beginning of nematode infection until gall creation. The blue stain showed the stem cell spreading with root growth. This was verification that the nematodes were seizing the control mechanism of the plant stem cells to make their nests.

Future: From farm to garden

This study revealed that plant parasitic nematodes can hijack the stem cells of plants. This discovery is very important to agriculture because it will enable the development of improved plant breeds after the mechanism of the stem cell appropriation is illuminated.

For example, a practical application for plant stem cells that is currently used in Japan for crops such as strawberries, asparagus, orchids, and cyclamen involves taking the stem cells from the strongest plants to culture new crops in vitro. However, the technology for inducing stem cell formation is very difficult and there are not many crops that can actually use these methods.

"Nematodes can infest a great variety of plants," said Professor Shinichiro Sawa, leader of the study at Kumamoto University. "This ability to activate the stem cells of most crops is a technology that humans do not yet possess. In the future, by studying how plant parasitic nematodes manipulate plant stem cells, we expect to be able to develop technologies that enable much more diversified plants and crops."

###

This finding was posted online in the journal Frontiers in Plant Science on 13 July 2017.

[Resource]

Yamaguchi, Y. L.; Suzuki, R.; Cabrera, J.; Nakagami, S.; Sagara, T.; Ejima, C.; Sano, R.; Aoki, Y.; Olmo, R.; Kurata, T.; Obayashi, T.; Demura, T.; Ishida, T.; Escobar, C. & Sawa, S., Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots, Frontiers in Plant Science, Frontiers Media SA, 2017. DOI: 10.3389/fpls.2017.01195

Media Contact

J. Sanderson, N. Fukuda
[email protected]

http://ewww.kumamoto-u.ac.jp/en/news/

Original Source

http://journal.frontiersin.org/article/10.3389/fpls.2017.01195/ http://dx.doi.org/10.3389/fpls.2017.01195

Share15Tweet7Share2ShareShareShare1

Related Posts

AAV Boosts STC-1, Eases Neuroinflammation, Saves Vision

September 2, 2025

Evaluating Mindfulness Intervention for Self-Injury Recovery

September 2, 2025

New Isoquinoline Derivatives Show Promise as Antifungal Agents

September 2, 2025

Protein Lipoylation: Key to Cancer Metabolic Therapy

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AAV Boosts STC-1, Eases Neuroinflammation, Saves Vision

MASL Alters OSCC Cells: Growth, Motility, Morphology Changes

Herbal Extracts Enhance Antibiotic Effects on Resistant Pathogens

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.