• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Breathing in a new gene therapy to treat pulmonary hypertension

Bioengineer by Bioengineer
July 12, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mount Sinai has partnered with Theragene Pharmaceuticals, Inc. to advance a novel airway-delivered gene therapy for treating pulmonary hypertension (PH), a form of high blood pressure in blood vessels in the lungs that is linked to heart failure. If the therapy succeeds in human clinical trials, it will provide patients for the first time with a way to reverse the damage caused by PH.

This gene therapy technique comes from the research of Roger J. Hajjar, MD, Professor of Medicine and Director of the Cardiovascular Research Center at the Icahn School of Medicine at Mount Sinai, and has been proven effective in rodent and pig animal models. PH is a deadly disease that disproportionately affects young adults and women; 58 percent of cases are found in young adults and 72 percent are women. There is currently no effective cure for PH, and about 50 percent of people who are diagnosed will die from the disease within five years.

PH is a rare (15-50 cases per million people), rapidly progressing disease that occurs when blood pressure is too high in vessels leading from the heart to the lungs. The high pressure is caused by abnormal remodeling of the lung blood vessels, characterized by a proliferation of smooth muscle cells and a thickening and narrowing of these vessels, and can lead to failure of the right ventricle of the heart and premature death. Abnormalities in calcium cycling within the vascular cells play a key role in the pathophysiology of pulmonary hypertension, along with deficiencies in the sarcoplasmic reticulum calcium ATPase pump (SERCA2a) protein which regulates intracellular calcium within these vascular cells and prevents them from proliferating within the vessel wall. Downregulation of SERCA2a leads to the proliferative remodeling of the vasculature. This gene therapy, delivered via an inhaled aerosolized spray, aims to increase the expression of SERCA2a protein, and has been shown in rodents and pigs to improve heart and lung function, as well as reduce and even reverse cellular changes caused by PH.

"This is a devastating disease, and our work in collaboration with many laboratories across the country has allowed us to identify a specific molecular target and use gene therapy to improve cardiovascular and lung parameters in experimental models of PH. We look forward to starting first-in-human studies using this approach in affected patients," said Dr. Hajjar, the senior author of the studies, highlighting that clinical trials will be underway in the next two years. It may take several years before a product is commercially available for PH patients.

"We are excited about the potential for SERCA2a gene therapy as a new modality in treating this serious disease," said Jon Berglin, Chief Executive Officer of Theragene Pharmaceuticals, Inc. "We look forward to develop and advance this promising product into the clinic."

"This represents another critical advancement in a potentially transformative therapeutic breakthrough by Mount Sinai scientists, demonstrating our commitment to improving health outcomes. We are thrilled to be working with Theragene Pharmaceuticals, and continue to strengthen our expertise in partnering health care innovations with industry," said Erik Lium, PhD, Senior Vice President of Mount Sinai Innovation Partners, the commercialization arm of the Icahn School of Medicine at Mount Sinai.

###

About Mount Sinai Innovation Partners (MSIP)

MSIP is responsible for driving the real-world application and commercialization of Mount Sinai discoveries and the development of research partnerships with industry. The aim is to translate these innovations into healthcare products and services that benefit patients and society. MSIP is responsible for the full spectrum of commercialization activities required to bring the Icahn School of Medicine and the Mount Sinai Health System's inventions to life. These activities include evaluating, patenting, marketing and licensing new technologies, engaging commercial and non-profit relationships for sponsored research, material transfer and confidentiality, as well as fostering an ecosystem of entrepreneurship within our research and health system communities. For more information, visit http://www.ip.mountsinai.org.

About Theragene Pharmaceuticals, Inc.

Theragene is a biopharmaceutical company developing cutting-edge science for the treatment of debilitating diseases. The Company's diverse portfolio consists of preclinical and clinical oncology and cardiology platforms utilizing next generation gene therapy and immunotherapy methods.

Media Contact

Cynthia Cleto
[email protected]
646-605-7359
@mountsinainyc

http://www.mountsinai.org

Share12Tweet8Share2ShareShareShare2

Related Posts

Blood Transfusions Increase Bronchopulmonary Dysplasia Risk in Preemies

September 10, 2025

New ECU Study Reveals Muscle Loss in Children During Early Cancer Treatment: A Hidden Threat to Recovery

September 10, 2025

Biochar and Starch Combo Boosts Lettuce Resilience Against Antibiotic Pollution

September 10, 2025

RSV Can Severely Impact Even Healthy Children, New Research Shows

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    52 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Movement and Annual Cycle in Spoonbills

Targeted Intraoperative Radiotherapy Advances in Early Breast Cancer

Blood Transfusions Increase Bronchopulmonary Dysplasia Risk in Preemies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.