• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Combining antibiotics proves more effective against common infection

Bioengineer by Bioengineer
July 4, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The common and highly resistant Pseudomonas aeruginosa bacterium is a fatal threat to weakened and ill patients. A new study from Lund University in Sweden now shows that a combination treatment using two different types of antibiotics can reduce mortality up to five times.

The findings are part of a new doctoral thesis, which also describes some of the bacterium's ingenious survival strategies in the human body.

"The combination treatment against Pseudomonas aeruginosa was effective in all age groups and for various types of infections, including pneumonia and urinary tract infections. The results are ready to be put into practice at Swedish hospitals immediately", says Magnus Paulsson, a doctor of medical science at Lund University and physician at Skåne University Hospital.

Pseudomonas aeruginosa is a very common bacterium, found in most environments. It is practically resistant to our most common antibiotics, and nowadays certain bacterial strains have become completely resistant to all antibiotics.

However, Pseudomonas aeruginosa mainly poses a serious threat to weakened and ill patients, usually already undergoing care. For example, people with cystic fibrosis, COPD (chronic obstructive pulmonary disease) or urinary catheters have a high risk of developing an infection caused by this bacterium. Some of these patients subsequently develop sepsis (blood poisoning) which can be fatal.

"We live longer, which also means that there are more people who live with various diseases. Therefore, infections caused by Pseudomonas aeruginosa and other bacteria that affect people with impaired immune systems have become more common", explains Magnus Paulsson.

In his thesis, he offers new explanations as to why Pseudomonas aeruginosa survives in the human body – despite antibiotic medication. The focus of the research is on the bacterial vesicles – a type of excreted nanoparticles, which are dislodged from the bacterial surface. These carry and spread many of the bacterial properties.

Pseudomonas aeruginosa, like the related Moraxella catarrhalis bacterium, produces beta-lactamase which breaks down antibiotics. The bacteria can then use the vesicles to spread the substance. Paulsson's thesis shows that the vesicles help enable these and other bacteria to effectively colonise the body: when the vesicles spread, the body responds by engaging its immune system. But the vesicles do not let themselves be defeated; instead, protect their interior cargo and inhibit the immune system's ability to neutralise the beta-lactamase, promoting bacterial invasion in the body.

Another trick in which Pseudomonas aeruginosa uses its vesicles was studied with particular focus on infection in the lungs. In this case, the vesicles trigger an increased production of vitronectin – a protective protein that controls the body's immune system. The Pseudomonas bacteria binds vitronectin to its surface and the immune response is subsequently stopped.

"The process was previously known, but our study is the first to show that this can happen in our lungs", says Magnus Paulsson.

The thesis is based on both patient and laboratory studies. Now, the research continues on how to stop the bacterial progression using a vaccine or various bodily defence mechanisms.

###

Magnus Paulsson defended his thesis "Host-pathogen interactions in Pseudomonas aeruginosa invasive and respiratory tract infection" at Lund University on 24 May 2017: http://portal.research.lu.se/portal/en/publications/hostpathogen-interactions-in-pseudomonas-aeruginosa-invasive-and-respiratory-tract-infection(076b2f13-acff-4bc5-9f27-f63e686345b4).html

Media Contact

Magnus Paulsson
[email protected]
46-703-124-424
@lunduniversity

http://www.lu.se

http://portal.research.lu.se/portal/en/publications/hostpathogen-interactions-in-pseudomonas-aeruginosa-invasive-and-respiratory-tract-infection(076b2f13-acff-4bc5-9f27-f63e686345b4).html

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

TriCAM Study Explores Complementary Medicine in Stem Cell Transplants

September 8, 2025

PRMT1 Protein Mitigates Brain Damage After Ischemia by Inhibiting RIPK1-Driven Cell Death Pathways

September 8, 2025

New C-3-Substituted Oleanolic Acid Benzyl Amide Shows Promise Against Influenza A by Inhibiting PA–PB1 Interaction and Regulating Macrophage Inflammation

September 8, 2025

Just 1 in 7 Online Health Images Demonstrate Correct Blood Pressure Measurement Technique

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UZH Device Pioneers Search for Light Dark Matter

TriCAM Study Explores Complementary Medicine in Stem Cell Transplants

PRMT1 Protein Mitigates Brain Damage After Ischemia by Inhibiting RIPK1-Driven Cell Death Pathways

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.