• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers gain new insights into the formation of non-pathological amyloids

Bioengineer by Bioengineer
June 20, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of scientists from the VIB lab of Han Remaut (VIB-VUB) and the lab of Yves Dufrêne at UCL Louvain-La-Neuve collaborated on a study of functional amyloids -protein aggregates with the typical amyloid structure that do not lead to disease but rather serve a dedicated biological function. Led by Mike Sleutel (VIB-VUB), the team used a novel microscopy method to examine the formation of functional amyloids by bacteria in real time, observing key growth and regulatory characteristics that could lead to new biomaterials as well as insights into the development and progression of human diseases caused by pathological amyloid plaques. Their research is published in the renowned scientific journal Nature Chemical Biology.

In humans, amyloids are associated with neurodegenerative illnesses such as Alzheimer's, Parkinson's and Huntington's disease, and prion diseases like bovine spongiform encephalopathy (BSE) and Creutzfeldt-Jakob disease. In these pathological amyloids, proteins are trapped in a toxic form that causes cell death, and leading to brain and organ damage and eventually death.

Proteins with purpose

Amyloid plaques are composed of proteins or protein fragments that organize into spiraling fibers that continuously grow by attracting new molecules. Previous research has indicated that the resulting tissue damage in human disease is mainly caused by small protein aggregates generated during the early stages of amyloid formation. These molecular predecessors to amyloids are composed of the same subunits, but differ in structure. Bacteria, however, have the remarkable ability to make 'functional amyloids' through a deliberate pathway that does not involve the formation of toxic intermediates.

Prof. Dr. Han Remaut (VIB-VUB): "The goal of this research was to learn more about the process by which bacteria are able to circumvent the development of these harmful toxic intermediates. To do so, we relied on high-speed atomic force microscopy, which allowed us to observe the growth individual amyloid fibers 100 times faster than conventional atomic force microscopes can."

New pathways create non-toxic amyloids

The scientists found that curli, a type of functional amyloids created by E. coli to form biofilms, follow a different developmental process than pathological amyloids. They watched curli fibers spawn and grow under the atomic force microscope. During the nucleus-forming process of amyloid development, curli subunits collect into minimally sized fibers that immediately have the same properties as mature curli.

Dr. Mike Sleutel (VIB-VUB): "Curli fibers are formed in such a way that the subunits readily organize into a minimal amyloid fragment without forming any of the toxic intermediate states that are involved in amyloid diseases. Also, we found that bacteria have the capability to regulate the growth of these curli fibers by producing proteins that can block the sites where incoming subunits would bind."

Fascinating future avenues

Curli are an ideal model system to use in uncovering the differences between functional and pathological amyloids, and to understand how bacteria are able to deal with potentially toxic types of amyloids without being damaged. Even more, functional amyloids could serve as the future building blocks of new biomaterials.

PhD student and co-author Imke Van Den Broeck (VIB-VUB): "An interesting research avenue that we are pursuing is the production of genetically modified amyloid fibers to display functional groups of interest, such as antibodies, enzymes, etc. Using this approach, we envisage the formation of self-assembling nanowires with programmable functions to create a novel class of biomaterials."

###

Note: The lab of Han Remaut is part of the VIB-VUB Center for Structural Biology

Publication

Nucleation and growth of a bacterial functional amyloid at single-fiber resolution, Sleutel et al., Nature Chemical Biology

Questions from patients

A breakthrough in research is not the same as a breakthrough in medicine. The realizations of VIB researchers can form the basis of new therapies, but the development path still takes years. This can raise a lot of questions. That is why we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: [email protected]. Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

Media Contact

Sooike Stoops
[email protected]
32-924-46611
@VIBLifeSciences

http://www.vib.be

http://dx.doi.org/10.1038/nchembio.2413

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Stanford Medicine Researchers Develop Easy Technique to Visualize Microscopic Fibers

November 5, 2025

Urban Fungi Exhibit Evidence of Thermal Adaptation, Study Finds

November 5, 2025

Lysosomes and Lunapark Shape Secretome Translation

November 5, 2025

High BMI Linked to Increased Glycated Albumin Levels

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ISSCR and Stem Cell Network Unveil Global Initiative to Advance Regenerative Medicine Workforce Development

Stanford Medicine Researchers Develop Easy Technique to Visualize Microscopic Fibers

Lymph Node Drives FSP1 Target in Melanoma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.