• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

What makes a reach movement effortful?

Bioengineer by Bioengineer
June 7, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Thomas Steuer/ Pierre Morel

When choosing between alternative actions, we have to compare the positive outcomes of those actions and weigh them against their costs. Whether a predator hunting prey, a monkey picking fruits, or a human wavering between stairs and elevator, the physical effort associated with executing an action is a relevant cost and hence a decision factor. Understanding how we estimate movement effort is thus necessary to understand how we take decisions.

To study physical effort, human subjects were asked to repeatedly choose between arm movements which differed in amplitude or duration and in force. Not surprisingly, effort increased with the strength of a force resisting the movement. The researchers managed to quantify this dependency precisely, showing that effort was proportional to the square of that strength. Additionally, effort was higher when the movements involved weaker muscles, even for movements that necessitated only little strength. More surprisingly, Morel and colleagues showed that the distance covered by the movements did not determine effort. Instead, effort depended on the duration of the movements, with movements that lasted longer feeling more strenuous than brief movements.

"Our results allow us to estimate action-related costs in decision-making, showing they cannot easily be predicted from energetic expense", says Morel. "More than that, the results also give weight to the idea that action selection in decision-making and in movement execution have common properties and hence might be based on shared mechanisms." When a given action is executed, its goal can typically be achieved in many ways. For example, the multiple joints of the arm provide a large flexibility in how we could conduct reaches to a given target object. Nevertheless, when repeating reaches towards the same target, we tend to execute them in the same optimized way. "We conclude that previously described optimization principles during movement execution seem to also serve as guiding principles during economically motivated conscious choice before movement execution", says Alexander Gail, head of the research group. Understanding how we estimate movement effort is an important step towards understanding how we take decisions.

###

Original publication

Morel P, Ulbrich P, Gail A (2017) What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control. PLoS Biol 15(6): e2001323. https://doi.org/10.1371/journal.pbio.2001323

Media Contact

Dr. Susanne Diederich
[email protected]
49-551-385-1359

http://dpz.eu

Related Journal Article

http://dx.doi.org/10.1371/journal.pbio.2001323

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Male-Biased Immune Changes in Late-Onset Preeclampsia

Male-Biased Immune Changes in Late-Onset Preeclampsia

December 24, 2025
blank

Mitochondrial Recombination Fuels Rapid Fish DNA Evolution

December 24, 2025

Immune Response Differences Influence Parkinson’s Disease Progression

December 24, 2025

Unlocking Xiangyang Black Pig Genetics Through Resequencing

December 24, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Agentic AI in SMMEs: A Bibliometric Study

Enhancing Nursing Curriculum with Spirituality and Inclusion

Managing Acute Pain and Delirium in Seniors

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.