• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Newly discovered DNA sequences can protect chromosomes in rotifers

Bioengineer by Bioengineer
June 5, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Michael Shribak, Irina Arkhipova

WOODS HOLE, Mass. — Rotifers are tough, microscopic organisms highly resistant to radiation and repeated cycles of dehydration and rehydration. Now Irina Arkhipova, Irina Yushenova, and Fernando Rodriguez of the Marine Biological Laboratory (MBL) have discovered another protective mechanism of this hardy organism: the Terminons. Their findings, which can have implications for research on aging and genome evolution, are published this week in Molecular Biology and Evolution.

Terminons are a type of retrotransposon, DNA sequences that can copy themselves from RNA and relocate within the genome. While most transposons insert between DNA sequences, Terminons are unusual in that they attach at the end of chromosomes. Arkhipova first came across transposable elements that insert at chromosome ends in 2007 but only now has the size of these transposons been determined.

Chromosomes in eukaryotic cells (which make up all multicellular organisms) are capped with DNA sequences called telomeres, which protect the ends from degradation. By attaching to telomeres, Terminons provide even more buffer against chromosome degradation, which has been associated with aging. The discovery of Terminons could have substantial impact for research on the mechanisms of aging.

The Terminon is a giant transposon, approximately six times the size of the typical retrotransposon. Terminons reach this giant size because they seem to pick up additional genes, either from viral or cellular origins, Arkhipova says. While Terminons may be involved in capturing foreign genes — a highly unusual property of bdelloid rotifers discovered in Arkhipova's lab — it is unclear how this happens. Depending on what genes they acquire, some retrotransposons have evolved into viruses. So could Terminons evolve into viruses?

"That would be a very interesting question we hope to address, but these would be totally new types of viruses that haven't been described before," Arkhipova says.

Absent from all other life forms, Terminons are found in only the bdelloid rotifers. Members of this rotifer class span tens of millions of years of evolutionary history, suggesting this protective mechanism for their chromosomes is ancient. With so many undiscovered organisms occupying every niche of our globe, it is possible there are other unknown types of transposable elements that have potential for tremendous impacts on their hosts.

Several MBL scientists are actively developing the rotifer as a model system to study transposable elements in the genome, the mechanisms of aging, DNA repair strategies, and evolution without sexual reproduction.

###

Citation:

Arkhipova, I., Yushenova, I.A., and Rodriguez, F. (2017) Giant reverse transcriptase-encoding transposable elements at telomeres. Mol. Biol. Evol. DOI: 10.1093/molbev/msx159

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery – exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Media Contact

Diana Kenney
[email protected]
508-289-7139
@mblscience

http://www.mbl.edu

Original Source

http://www.mbl.edu/blog/newly-discovered-dna-sequences-can-protect-chromosomes-in-rotifers-findings-may-have-implications-for-aging-research/ http://dx.doi.org/10.1093/molbev/msx159

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.