• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers find chromosome cooperation is long-distance endeavor

Bioengineer by Bioengineer
June 1, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Multiple genomic elements work cooperatively and over long distances in order to ensure the proper functioning of chromosomes, a team of scientists has found. Its research offers new insights into the complexity of gene regulation.

The discovery, reported in the journal eLife, centers on condensins–proteins that are crucial in chromosome assembly and in cell division.

"Condensin complexes are essential for development, but the molecular mechanisms behind their function remain unclear," explains Sevinc Ercan, an associate professor in New York University's Department of Biology and the paper's senior author. "We now have a better understanding of their binding mechanisms, which is vital as condensin mutations inhibit genome activity, potentially leading to cancer and other diseases."

The researchers examined this process in the worm C. elegans. It is the first animal species whose genome was completely sequenced and therefore a model organism for studying genetics.

It's been long understood that the structure of chromosomes change dramatically during development. In addition, it has been established that functional genomic elements containing specific DNA sequences "recruit" condensins. However, the molecular orchestration by which this process occurs is not evident.

In the eLife study, the researchers found that, in fact, multiple genomic elements work cooperatively, which helps ensure that the correct condensins are recruited for the task of structuring chromosomes in a specific manner. Moreover, this interaction occurs over relatively long distances across the length of the chromosomes, underscoring the intricate and holistic nature of this process.

"By understanding the mechanisms by which genomes properly function, we have a firmer grasp of comprehending the nature and significance of abnormalities, giving us a clearer picture of how to begin to address them," observes Ercan.

###

The paper's other authors were: Sarah Elizabeth Albritton, an NYU doctoral candidate at the time of the study and now a scientist at the New York Genome Center; Anna-Lena Kranz, a postdoctoral fellow at the time of the study; Lara Heermans Winterkorn, a research technician at the New York Genome Center; and Lena Annika Street, a graduate student.

The study was supported by a grant from the National Institute of General Medical Sciences (NIGMS), which is part of the National Institutes of Health (R01GM107293).

Media Contact

James Devitt
[email protected]
212-998-6808
@nyuniversity

http://www.nyu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring MADS-Box Genes in Grass Pea Under Salt Stress

Exploring MADS-Box Genes in Grass Pea Under Salt Stress

September 5, 2025
blank

To Eat or Nurture? Male Frogs’ Behavior Dilemma

September 5, 2025

New Zealand Rabbit TCT Proteins: Climate Adaptation Insights

September 5, 2025

FDX1 Drives Malignant Progression in Triple-Negative Breast Cancer

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dendrobium officinale Modulates Colon Cancer Growth and Migration

Acupuncture vs. Sham: Sleep Relief for Parkinson’s Patients

Exploring MADS-Box Genes in Grass Pea Under Salt Stress

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.