• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The chemistry of plants facing multiple stress scenarios

Bioengineer by Bioengineer
May 30, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Karen Kloth

All living organisms harbour complex chemical networks inside their cells. The sum of all these chemical reactions is the driving force of life and is called metabolism. In his thesis work, Stefano Papazian at Umeå University in Sweden, studies how plants adapt their metabolic networks to respond to different environmental stresses.

"Plants are masters of metabolism, which they can re-shape and adjust according to their different needs" says Stefano Papazian at the Department of Plant Physiology at Umeå University.

In the environment, constant exposure to both living and non-living factors make plants vulnerable to a variety of threats. As plants cannot escape, they rely on their inner chemistry to confront all sorts of challenging scenarios.

"We can see plants as very sophisticated chemical factories. They are able to produce thousands of different compounds, each one presenting unique biological properties," says Stefano Papazian.

Most of these chemical compounds – called phytochemicals, play an important role inside the plant, for instance in the defence against insects that feed on leaves. Stefano Papazian's research aims to understand how plant chemistry helps them to defend against insect pests, such as butterfly caterpillars and aphids. Different insects cause different damage to the plant. For instance, while some butterfly caterpillars chew on the leaves, aphids feed by piercing through the plant surface and sucking its sap.

"The plant metabolic response is very specific, and it adapts its defence strategy according to the different enemies the plant encounters," says Stefano Papazian.

Plants produce many toxic compounds that can impair and slow down growth of their enemies, but in order to do so they have to balance other central metabolic activities, such as photosynthesis. Stefano Papazian's findings show that, in addition to producing substances to defend against caterpillar and aphid attacks, plants also reconfigure their sugar composition.

In his research, Stefano Papazian also studies how air pollution by ozone affects the plant-insect interaction:

"At an altitude of 50 kilometers in the atmosphere the ozone layer protects us from UV solar radiation, but at ground-level ozone is a toxic air pollutant, which affects both human health and plants".

In his thesis, Stefano Papazian shows how exposure to ozone affects the growth of insects, but also results in changes of the plant metabolism with negative effects on photosynthesis and ability to defend themselves.

"If we combine ecology with the study of plant chemistry and metabolism we can improve our understanding of plant-insect interactions in nature and agriculture. This comprehensive approach can help us to predict the effects of climate change and human impact on these delicate ecosystems," says Stefano Papazian.

###

Stefano Papazian was born and raised in Milano, Italy. He has a Bachelor's degree in Environmental Biotechnology from the University of Milano (Italy) and a Master´s degree in Experimental Plant Biology from Stockholm University. He performed his graduate studies at the Plant Physiology Department of Umeå University within the Umeå Plant Science Centre and in collaboration with the Swedish Metabolomics Centre.

Media Contact

Anna-Lena Lindskog
[email protected]
46-907-865-878
@UmeaUniversity

http://www.umu.se/umu/index_eng.html

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Two Key Gene Discovery Methods Uncover Complementary Biological Insights

Two Key Gene Discovery Methods Uncover Complementary Biological Insights

November 5, 2025
Leibniz-HKI Honored Again for Its Commitment to Equal Opportunity in Personnel Management

Leibniz-HKI Honored Again for Its Commitment to Equal Opportunity in Personnel Management

November 5, 2025

Bee Genome Study Uncovers Transposable Element Evolution

November 5, 2025

Single-Particle Genomics Reveals Abundant Unusual Marine Viruses

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inducing Cell Death in Metastatic Melanoma Opens New Avenues for Cancer Therapy

Uncovering Safer Painkillers: Freezing Opioids and Their Protein Receptors in Action

Two Minor Innovations That Could Revolutionize Agriculture

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.