• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Engines fire without smoke

Bioengineer by Bioengineer
May 30, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By observing the soot particles formed in a simple flame, researchers at KAUST have developed a computational model capable of simulating soot production inside the latest gasoline automobile engines1.

Although today's passenger vehicle engines are cleaner than ever before, their exhaust can still contain significant numbers of nanoscopic soot particles that are small enough to penetrate the lungs and bloodstream. This new computer model should help car makers improve their engines to cut soot formation.

Gasoline engines are not traditionally associated with soot–it's a problem usually linked with diesel vehicles. But over the last decade, to boost fuel efficiency, manufacturers have made their gasoline engines more diesel-like, adopting "direct injection" technology that sprays fuel directly into the engine cylinder.

"Sometimes you get fuel-rich pockets where there's not enough air for complete combustion or sometimes the fuel hits the cylinder wall and forms a pool fire," said S. Mani Sarathy from the KAUST Clean Combustion Center, who co-led the work. Both of these scenarios generate soot.

Working out how to minimize soot is a challenge because it is difficult to see inside an engine cylinder as fuel combustion takes place. Sarathy and his coworkers tackled the problem by burning a chemically simplified "gasoline surrogate" mixture in an experimental setup called a counterflow diffusion flame. By shining lasers into this open flame, they could monitor soot and its precursors as the fuel burns. "These experiments have been done previously with gaseous fuels, but this is the first time they have been done with gasoline-relevant liquid fuels," Sarathy said.

The team varied the composition of the fuel and observed particle production to build a model of the basic chemical reactions through which soot particles form and grow. "Once we have this basic kinetic model that works well in simple flames, we can utilize the model in an engine simulation," Sarathy explained. An engine combustion simulation is essentially an ensemble of many tiny flamelets, which are combined to give a complete picture of how soot is formed in an engine.

Car makers could use Sarathy's model in their own simulations to test whether changes, such as altering engine geometry or the timing of fuel injection, might cut soot production. "We also have industrial partners that utilize the model to see how different fuels and engine combustion strategies affect soot production," Sarathy said.

For future engine designs, the model will help manufacturers minimize soot before the engine ever rolls off the production line.

###

Media Contact

Michelle D'Antoni
[email protected]

http://kaust.edu.sa/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of RISE Program on Contraceptive Equity in Uganda

November 5, 2025
blank

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

November 5, 2025

Novel Asymmetric Stress Techniques Enhance Dislocation Density in Brittle Superconductors for Improved Vortex Pinning

November 5, 2025

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of RISE Program on Contraceptive Equity in Uganda

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

Novel Asymmetric Stress Techniques Enhance Dislocation Density in Brittle Superconductors for Improved Vortex Pinning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.