• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New online database has answers on mitochondrial disorders

Bioengineer by Bioengineer
May 24, 2017
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Cristina Nadalutti and Jack Griffith

EAST LANSING, Mich. – Providing answers — or at least more information — to the most difficult medical questions is the aim of medical scientists. And how research findings are translated and made available can be as important as the discoveries themselves.

In recent years, one area of medical research receiving increased attention is mitochondrial disease — a group of disorders caused by dysfunctional mitochondria. DNA polymerase gamma is the enzyme responsible for duplicating and maintaining mitochondrial DNA. Disorders related to its loss of function are a major cause of mitochondrial disease.

Michigan State University biochemist Laurie Kaguni and her team have created a new tool — the POLG Pathogenicity Prediction Server – to help clinicians and scientists better diagnose POLG disorders and more accurately predict their outcomes. The tool is featured in BBA Clinical.

Because of their central role in cellular energy production and multiple metabolic processes, mitochondrial diseases can affect organs, motor function and the nervous system. The wide spectrum of symptoms presented by these disorders poses significant challenges to their diagnosis.

The database contains 681 anonymous POLG patient entries gathered from publicly available case reports. Each patient entry includes data on age of diagnosis and symptoms present.

"POLG disorders, largely neurological and muscular, range from prenatally fatal conditions and severe infantile onset disorders, to milder, late onset conditions," said Kaguni, University Distinguished Professor at MSU and director of MSU's Center for Mitochondrial Science and Medicine. To date, 176 unique POLG missense mutations in mitochondrial patients have been reported in the literature.

"POLG syndromes are largely multi-system, so it is often difficult to identify them as such," said Kaguni, who has also held a joint appointment at the Institute of Biosciences and Medical Technology at the University of Tampere in Finland while pursuing this study. "And most of these syndromes are complicated by what is called compound heterozygosity, which means there is a different mutation in each of the two chromosomes in a pair. That presents a huge problem for pathogenicity prediction, and one that we decided to tackle."

Kaguni and her team approached this problem initially as a collaboration between her two labs and the group of Professor Anu Suomalainen at the University of Helsinki by studying Alpers syndrome — a severe form of POLG syndrome that has an onset of infantile to two years of age and, frequently, leads to death by age two. Because the symptoms (epilepsy, loss of brain function, liver failure) are clinically nearly unmistakable, they decided to use the 67 known Alpers mutations instead of all 176 POLG mutations to initiate the work.

What they discovered when they mapped the variants on a crystal structure of POLG modeled with the DNA substrate was that the mutations fall into five distinct clusters. This led to the conclusion that if an individual is identified as having a mutation in a given cluster and a second in another cluster, one can predict what their combination would do.

Building on this finding, Kaguni's team, which included graduate students from MSU and Tampere — Greg Farnum and Anssi Nurminen — then added the rest of the known POLG mutations to their study and found that all but two of them fell within the same clusters they made for Alpers syndrome.

"These findings show us that we can predict — for any given mutation — what impact it will have on the biochemistry of the enzyme," Kaguni said. "When we consider pairs of mutations in the context of all of the collected patient data, we can now predict with reasonable confidence whether the disease is going to be early, mid-life or later-life onset — and what the symptoms are likely to be."

The server features a mutation query interface so that the user can enter the POLG mutations identified in a patient.

Based on this information, the server displays the cluster mapping of the input mutations and shows any existing patient cases. Using existing cases with similar cluster-mapping mutations, the server displays an indicator of the most probable age of onset, which can be used as the basis for a diagnosis/prognosis for a patient.

"If someone has been diagnosed with a particular mutant pair and there is published data on it, you can find out quite accurately what is likely to happen," Kaguni said. "You can also look at what the symptoms are for other patients with that pairing. Notably, there are a number of common mutations in the global population, so that we have substantial data that will allow us to predict the outcome of new mutations within those clusters, or of new pairs of mutations.

"Our aim is to extend the use of the server and database to enable early diagnosis, because there are many deleterious combinations that we would expect to be developmentally lethal," Kaguni continued. "On the other end of the spectrum, for late-onset disorders, early diagnosis will aid in intervention with dietary and physical therapy regimes."

###

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Media Contact

Layne Cameron
[email protected]
517-353-8819
@MSUnews

http://msutoday.msu.edu/journalists/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Scientists Develop “Evolution Engine” to Accelerate Protein Reprogramming

Scientists Develop “Evolution Engine” to Accelerate Protein Reprogramming

August 8, 2025
blank

Autoantibodies Trigger Sensory Neuron Pain in Rats

August 8, 2025

New Clue: Odorant Protein Fibrils Cause Smell Loss

August 8, 2025

Toe Transfer Surgery Shows Promise in Enhancing Recovery After Finger Amputation

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    51 shares
    Share 20 Tweet 13
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Eco-Friendly ZIF-7 Carbon for Sensitive Rhodamine B Detection

Deep Learning Model Enhances Detecting Brain Hemorrhage

Scientists Develop “Evolution Engine” to Accelerate Protein Reprogramming

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.