• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Precise insight into the depths of cells

Bioengineer by Bioengineer
May 24, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Stelzer Research Group, Goethe University Frankfurt

FRANKFURT. Is it possible to watch at the level of single cells how fish embryos become trout, carp or salmon? Researchers at Goethe University Frankfurt have successfully combined two very advanced fluorescence microscopy techniques. The new high-resolution light microscope permits fascinating insights into a cell's interior.

Using the "light-sheet microscopy" technology invented and developed by Professor Ernst Stelzer, it was already possible to observe organisms in a very precise and vivid way during cell differentiation. His group at Goethe University Frankfurt has now combined light sheets with a technique which so far only allowed very high spatial resolutions (Light-sheet-based fluorescence microscopy (LSFM) is the most recent three-dimensional fluorescence microscopy technique. In fluorescence microscopy, a fraction of a cell's molecules is labelled with fluorescent markers, which are lit up with a beam of light. A camera records the three-dimensional distribution of the fluorescing molecules, i.e. the fluorophores. The outstanding advantage of LSFM is that even sensitive samples such as fish embryos survive observation. This is a major advancement since conventional methods, which illuminate the whole sample, expose the specimens to much more energy and destroy the cells in a very short period of time.

Ernst Stelzer, professor at the Institute of Cell Biology and Neuroscience and a principal investigator in the Cluster of Excellence "Macromolecular Complexes" of Goethe University Frankfurt, explains that LSFM does not illuminate the entire sample but only micrometre-thin light sheets. "Since we examine the biological specimens under conditions that are as natural as possible, we achieve very precise results", says Stelzer. However, not only static images of cells but also dynamic changes in their environment or genetic mutations can be measured in direct comparisons.

Bo-Jui Chang, Victor Perez Meza and Ernst Stelzer have now improved the technique further: "We combined light-sheet fluorescence microscopy with coherent structured illumination microscopy (SIM). This allows for an extremely high resolution", he reports. SIM is a super-resolution technique that produces several images, which are combined digitally. As a result, resolution is improved in the physical sense. The technical approach is to excite a fluorescing sample with a very specific illumination pattern. Sub-100 nm resolutions with this method are limited to surfaces but the technique has major advantages. It is fairly moderate in the excitation of the fluorescence, allows very fast imaging and can be used with all fluorescing molecules for high-resolution purposes.

"In the new microscope, which we call csiLSFM, we have developed the principle of SIM further in such a way that sub-100 nm resolutions are no longer limited to surfaces but can also be used in extensive three-dimensional objects. Here, two counterpropagating light sheets interfere at an angle of 180° so that they form the smallest possible linear interference pattern. As a result, we achieve an optimal resolution of less than 100 nanometres," explains Ernst Stelzer. The new instrument has three objective lenses. It works via the flexible control of rotation, frequency and phase shift of the perfectly modulated light sheet.

Images of endoplasmic reticulum of yeast, a complex membrane network of tubules, vesicles and cisterns, show that the researchers can use csiLSFM to work successfully with physiologically important objects.

###

Media Contact

Dr. Ernst H. K. Stelzer
[email protected]
@goetheuni

http://www.uni-frankfurt.de

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.