• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Domino effect in pharmaceutical synthesis

Bioengineer by Bioengineer
May 2, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chemists at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) headed by Prof. Dr. Svetlana B. Tsogoeva at the Chair of Organic Chemistry I have made research into pharmaceutical ingredient synthesis more efficient, more sustainable and more environmentally friendly. They have developed a novel synthetic route towards antiviral quinazoline heterocycles that have not been described previously in professional literature.

Heterocycles, ring shaped molecules which contain at least one heteroatom (such as nitrogen, oxygen, sulphur) play a central role in drug development research. They are contained in the vast majority of all pharmaceutics on the market. Quinazoline is a heterocycle and is, for example, a subunit of many anti-cancer drugs. Up to now, the synthesis of quinazoline heterocycles was very costly and required many individual steps starting with expensive compounds and reagents. In addition, fluorescence markers had to be linked to a drug to make its uptake into a cell visible.

The chemists at FAU have now developed a highly efficient method using metal-free domino processes. This simplifies the synthesis of the pharmaceutical ingredient and makes it more sustainable and economical. In so-called domino reactions, all of the required simple initial compounds and a solvent are mixed in one flask, in which multiple reaction steps take place without the addition of further reagents. Within a domino reaction one transformation triggers the next, similar to a row of dominoes where one tile hits the next. This synthesis makes isolation and purification of the intermediate products superfluous.

The FAU chemists have now combined three such metal-free multi-step domino reactions for the first time, and have run them in the same reaction flask. Lab work time, costs, waste, and the environmental footprint can be reduced using this combination in a 'one-pot' synthesis. This novel one-pot domino process creates a completely new type of quinazolines, which have intrinsic fluorescence properties. This means an extra fluorescence marker to make the substance visible is no longer necessary.

In addition, the novel quinazolines have shown that they are highly effective against herpes viruses, and in contrast to many other bioactive compounds, do not damage healthy cells. This reduces possible side effects and increases the therapeutic range.

###

Media Contact

FAU press office
[email protected]
@FAU_Germany

http://www.uni-erlangen.de

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Lemongrass Oil-γ-Cyclodextrin Complex Boosts Mango Preservation

Lemongrass Oil-γ-Cyclodextrin Complex Boosts Mango Preservation

August 24, 2025
Mini myrmecophyte Lures Large Ectatomma Ant Ambush

Mini myrmecophyte Lures Large Ectatomma Ant Ambush

August 24, 2025

Creating the Pediatric Weight Questionnaire for Youth Obesity

August 24, 2025

Exploring Tadpole Buccopharyngeal Morphology in Sphaenorhynchini

August 24, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    85 shares
    Share 34 Tweet 21
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lemongrass Oil-γ-Cyclodextrin Complex Boosts Mango Preservation

Mini myrmecophyte Lures Large Ectatomma Ant Ambush

Creating the Pediatric Weight Questionnaire for Youth Obesity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.