• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UVA finds way to speed search for cancer cures dramatically

Bioengineer by Bioengineer
April 25, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Josh Barney | UVA Health System

A new technique developed at the University of Virginia School of Medicine will let a single cancer research lab do the work of dozens, dramatically accelerating the search for new treatments and cures. And the technique will benefit not just cancer research but research into every disease driven by gene mutations, from cystic fibrosis to Alzheimer's disease – ultimately enabling customized treatments for patients in a way never before possible.

The new technique lets scientists analyze the effects of gene mutations at an unprecedented scale and speed, and at a fraction of the cost of traditional methods. For patients, this means that rather than thinking about the right drug for a certain disease, doctors will think about the right drug to treat the patient's specific gene mutation.

"Every patient shouldn't receive the same treatment. No way. Not even if they have the same syndrome, the same disease," said UVA researcher J. Julius Zhu, PhD, who led the team that created the new technique. "It's very individual in the patient, and they have to be treated in different ways."

Understanding Gene Mutations

Understanding the effect of gene mutations has, traditionally, been much like trying to figure out what an unseen elephant looks like just by touching it. Touch enough places and you might get a rough idea, but the process will be long and slow and frustrating. "The way we have had to do this is so slow," said Zhu, of UVA's Department of Pharmacology and the UVA Cancer Center. "You can do one gene and one mutation at a time. Now, hopefully, we can do like 40 or 100 of them simultaneously."

Zhu's approach uses an HIV-like virus to replace genes with mutant genes, so that scientists can understand the effects caused by the mutation. He developed the approach, requiring years of effort, out of a desire to both speed up research and also make it possible for more labs to participate. "Even with the CRISPR [gene editing] technology we have now, it still costs a huge amount of money and time and most labs cannot do it, so we wanted to develop something simple every lab can do," he said. "No other approach is so efficient and fast right now. You'd need to spend 10 years to do what we are doing in three months, so it's an entirely different scale."

To demonstrate the effectiveness of his new technique, Zhu already has analyzed approximately 50 mutations of the BRaf gene, mutations that have been linked to tumors and to a neurodevelopmental disorder known as cardio-facio-cutaneous syndrome. The work sheds important light on the role of the mutations in disease.

Rescuing Failed Treatments

Zhu's new technique may even let researchers revisit failed experimental treatments, determine why they failed and identify patients in which they will be effective. It may be that a treatment didn't work because the patient didn't have the right mutation, or because the treatment didn't affect the gene in the right way. It's not as simple as turning a gene on or off, Zhu noted; instead, a treatment must prompt the right amount of gene activity, and that may require prodding a gene to do more or pulling on the reins so that it does less.

"The problem in the cancer field is that they have many high-profile papers of clinical trials [that] all failed in some way," he said. "We wondered why in these patients sometimes it doesn't work, that with the same drug some patients are getting better and some are getting worse. The reason is that you don't know which drugs are going to help with their particular mutation. So that would be true precision medicine: You have the same condition, the same syndrome, but a different mutation, so you have to use different drugs."

###

Findings Published

Zhu and his team have described the technique in an article published in the scientific journal Genes & Development, making it available to scientists around the world. The paper was written by Chae-Seok Lim, Xi Kang, Vincent Mirabella, Huaye Zhang, Qian Bu, Yoichi Araki, Elizabeth T. Hoang, Shiqiang Wang, Ying Shen, Sukwoo Choi, Bong-Kiun Kaang, Qiang Chang, Zhiping P. Pang, Richard L. Huganir and Zhu.

The work was supported by the National Natural Science Foundation of China, the Robert Wood Johnson Foundation, the National Honor Scientist Program of Korea, the Howard Hughes Medical Institute and the National Institutes of Health, grants MH108321, NS065183, NS089578, HD064743, AA023797, MH64856, NS036715, NS053570, NS091452 and NS092548.

Media Contact

Josh Barney
[email protected]
434-906-8864

http://www.healthsystem.virginia.edu/home.html

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.