• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New strategy produces stronger polymers

Bioengineer by Bioengineer
April 24, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CAMBRIDGE, MA — Plastic, rubber, and many other useful materials are made of polymers — long chains arranged in a cross-linked network. At the molecular level, these polymer networks contain structural flaws that weaken them.

Several years ago, MIT researchers were the first to measure certain types of these defects, called "loops," which are caused when a chain in the polymer network binds to itself instead of another chain. Now, the same researchers have found a simple way to reduce the number of loops in a polymer network and thus strengthen materials made from polymers.

To achieve this, the researchers simply add one of the components of the polymer network very slowly to a large quantity of the second component. Using this approach, they were able to cut the number of loops in half, in a variety of different polymer network structures. This could offer an easy way for manufacturers of industrially useful materials such as plastics or gels to strengthen their materials.

"Just by changing how fast you add one component to the other, you can improve the mechanical properties," says Jeremiah A. Johnson, the Firmenich Career Development Associate Professor of Chemistry at MIT and the senior author of the paper.

MIT graduate student Yuwei Gu is the first author of the paper, which appears in the Proceedings of the National Academy of Sciences the week of April 24.

Other authors are MIT associate professor of chemical engineering Bradley Olsen; MIT graduate student Ken Kawamoto; former MIT postdocs Mingjiang Zhong and Mao Chen; Case Western Reserve University Assistant Professor Michael Hore; Case Western Reserve graduate student Alex Jordan; and former MIT visiting professor and Case Western Reserve Associate Professor LaShanda Korley.

Controlling loops

In 2012, Johnson's group devised the first way to measure the number of loops in a polymer network and validated those results with theoretical predictions from Olsen. The researchers found that the loops can make up about 9 percent to nearly 100 percent of the network, depending on the concentration of polymer chains in the starting material and other factors.

A few years later, Johnson and Olsen developed a way to calculate how much these loops weaken a material. In their latest work, they set out to reduce loop formation, and to achieve this without changing the composition of the materials.

"The goal we set for ourselves was to take the same set of precursors for a material that one would normally use, and, using the exact same precursors under the same conditions and at the same concentration, make a material with fewer loops," Johnson says.

In this paper, the researchers first focused on a type of polymer structure known as a star polymer network. This material has two different building blocks: a star with four identical arms, known as "B4," and a chain known as "A2." Each molecule of A2 attaches to the end of one of the B4 arms. However, during the typical synthesis process, when everything is mixed together at once, some of the A2 chains end up binding to two of the B4 arms, forming a loop.

The researchers found that if they added B4 very slowly to a solution of A2, each of the B4 arms would quickly react with a single molecule of A2, so there was less opportunity for A2 to form loops.

After a few hours of slowly adding half of the B4 solution, they added the second half all at once, and the star-shaped subunits joined together to form a cross-linked network. This material, the researchers found, had about half as many loops as the same material produced using the traditional synthesis process.

Depending on how many loops were in the original material, this "slow then fast" strategy can improve the material's strength by as much as 600 percent, Johnson says.

Better products

The researchers also tried this technique with four other types of polymer network synthesis reactions. They were not able to measure the number of loops for all of those types of polymers, but they did find similar improvements in the strength of the materials.

This approach could potentially help to improve the strength of any material made from a gel or other cross-linked polymer, including plastics, membranes for water purification, adhesives made of epoxy, or hydrogels such as contact lenses.

Johnson's lab is now working on applying this strategy to a variety of materials, including gels used to grow cells for tissue engineering.

###

The research was funded by the National Science Foundation.

Media Contact

Sarah McDonnell
[email protected]
617-253-8923
@MIT

http://web.mit.edu/newsoffice

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

September 13, 2025
blank

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Insights on Menstrual Health in Eating Disorder Units

September 12, 2025

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

Insights on Menstrual Health in Eating Disorder Units

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.