• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Probing into the molecular requirements for antioxidant activity

Bioengineer by Bioengineer
April 21, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Free radicals are derived either from normal essential metabolic processes in the human body or from external sources such as exposure to environmental xenobiotics. A balance between free radicals and antioxidants is essential for proper physiological function. Increased production of free radicals or a decreased capacity in the body to produce antioxidants, leads to oxidative stress. The reported chemical evidence suggests that dietary antioxidants can help in disease prevention. Therefore, it is important to understand the reaction mechanisms between antioxidants and free radicals. Understanding the reaction mechanisms can help in evaluating the antioxidant activity of antioxidant compounds and also help to develop novel antioxidants. For that purpose, PCA and ANN modelling were used to explain the structure-activity relationships of the selected phenolic compounds. Two distinct mechanisms of action for flavonoids and polyphenolic acids were confirmed, i.e. breaking of free radical chain reactions by donation of a hydrogen atom to neutralise the free radical and the chelating ability of polyphenolic acids. The ANN model identified the combination of chemical features that contribute to antioxidant activity and govern different mechanisms of actions. Both models agreed that structural characteristics of phenolic compounds responsible for the high DPPH* scavenging activity include, number and position of alcohol groups on the aromatic ring, molecular size and flexibility/bulkiness and solubility. The ANN model showed that the presence of phenol groups in the phenolic acid group were particularly important for their observed antioxidant activity due to the way they can chelate iron ions and suppress the iron catalyzed hydrogen peroxide which is the most important source of free radicals in living organisms. Thus, although two phenolic acids may have the same relative polarity, their different functional groups will change the nature of their interactions with free radicals.

###

For more information about the article, please visit http://www.eurekaselect.com/148869

Reference: Morton, DW.; (2017). Probing into the Molecular Requirements for Antioxidant Activity in Plant Phenolic Compounds Utilizing a Combined Strategy of PCA and ANN. Combinatorial Chemistry & High Throughput Screening., DOI: 10.2174/1386207320666170102123146

Media Contact

Faizan ul Haq
[email protected]
@BenthamScienceP

http://benthamscience.com/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.