• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UTSA professor’s study describes new way to predict tumor growth

Bioengineer by Bioengineer
April 18, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study by Yusheng Feng, professor of mechanical engineering at The University of Texas at San Antonio (UTSA), describes an algorithm that can predict the growth of cancerous tumors, which could help medical professionals judge the best treatment options for patients.

Feng first began researching cancer in 2002, predicting the outcomes of cancer treatments that utilize laser technology.

"In that project, we were using the heat of a laser to kill the cancer cells of the tumor," he said. "We had to use a computer simulation to show the amount of heat we were going to use and for how long, so we didn't damage any non-cancerous tissue."

In this project, Feng learned just how beneficial computer simulations can be when approaching treatments, especially cancer treatments, which regularly require surgery.

"One of the biggest advantages you can give a doctor and their patient is knowing how fast a tumor is growing," he said. "This helps you to make the decision of not just when to treat someone, how to treat them."

Feng collaborated with colleagues at The University of Texas at Austin and the MD Anderson Cancer Center to create the algorithm described in the study. It takes into account major biological events in the tissue and cells of the patient, as well as the patterns of growth of several different types of cells, among dozens of other factors. As a result, the algorithm is applicable to all types of cancers.

"Prediction is always good," he said. "But treatments also always benefit from patient-specific treatment and precision medicine."

Feng has plans to apply the algorithm to a computer program that can aid medical professionals in judging which treatments, if any, are appropriate for a patient's tumor based on how slowly or quickly it's growing.

"A tumor cell is nothing but a normal cell out of control in the wrong place," he said. "That's why cancer is so hard to treat: it's yourself."

###

UTSA is ranked among the top 400 universities in the world and among the top 100 in the nation, according to Times Higher Education.

Media Contact

Joanna Carver
[email protected]
210-243-4557
@utsa

http://www.utsa.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.