• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

UTSA professors receive grant to create water-purifying nanomaterial

Bioengineer by Bioengineer
March 30, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Heather Shipley, chair of the Department of Civil and Environmental Engineering and Burzik Professor in Engineering Design at The University of Texas at San Antonio (UTSA), and Kelly Nash, associate professor of physics, have received a $65,000 grant from the National Science Foundation to develop a nanomaterial that can do the work of a water treatment plant.

Shipley's main area of focus is water, and in previous research projects she has worked with nanomaterials that are commercially available. Because Nash's expertise is nanomaterials, the two colleagues chose to collaborate in making a composite of several nanomaterials so that one material could do the work of many.

"We're working to create a nanocomposite material to treat pollutants in water," Shipley said. "This could be used for in-home water treatment, or it could be used in developing countries where the infrastructure for water treatment plants might not exist."

The material the researchers are creating alongside a team of UTSA graduate students is entirely new. It's activated by sunlight, causing organic and heavy metal pollutants to dissolve through light reaction.

"It's doing the job of a water treatment plant, but it also goes a step further," Nash said. "In a plant, there are many processes to catch these pollutants but when you get down into the levels of microbial and toxic metal ions you need a nanomaterial to filter them."

Shipley noted that water sources all over the world are polluted by industrial processes and in various other ways, which makes the water hazardous to use. Rather than focus on one specific pollutant, she and Nash wanted to create a material that could address a majority of them.

"It made sense to create an end-user type of solution instead of create a new type of water treatment plant for a new city," Shipley said. "That way it's accessible and much more feasible, especially in developing areas where there's minimal water treatment."

Shipley and Nash have now been developing the new material for a year and are so far satisfied with its performance, but are now facing a new challenge: making the material reusable.

"Once it's activated by light, it does what it's been designed to do, but then it's done," Nash said. "We don't want to make more waste, so now we're working on making the material regenerate so it can be used again and again."

###

Media Contact

Joanna Carver
[email protected]
210-243-4557
@utsa

http://www.utsa.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.