• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

MSU lands NIH grant to study connection between fish genes and human medicine

Bioengineer by Bioengineer
March 23, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of MSU

EAST LANSING, Mich. – Michigan State University has landed a $727,000 grant from the National Institutes of Health to improve the use of fish as disease models for human medicine.

Ingo Braasch, MSU integrative biologist who's leading the MSU efforts of this collaborative grant that also includes the University of Oregon and Nicholls State University (Louisiana), will focus on the spotted gar, which has a similar genome to humans and zebrafish, a popular biomedical fish model. The ancient, slowly evolving spotted gar can serve as a "bridge species" between human and zebrafish, thereby opening pathways to important advancements in human biomedical research.

"There are potentially thousands of connections that can be made from human to zebrafish and back through gar as a steppingstone that could not be done by comparing human and zebrafish directly," Braasch said. "This points to a better way to perform biomedical research for studying human disease in zebrafish. With higher precision, researchers will be able to find the right region in the genome of zebrafish to design experiments and mutation models."

Genome-wide association studies, or GWAS, have detected thousands of genetic variations near hundreds of genes associated with numerous human diseases. The problem is that scientists don't know which gene near a GWAS region in the human genome may cause the disease. Comparative medicine, using rearranged genomes of fish models to test hypotheses, can help locate those troublesome intersections and lead to personalized approaches to investigate and potentially treat those diseases.

Zebrafish are often used as model fish in biomedical research, but due to their genetic divergence from humans it can be difficult to make direct biological comparisons.

Braasch believes the spotted gar can help biomedical researchers make the jump. He hopes to develop additional resources to help identify disease-associated genetic region in humans. In turn, researchers can then locate the corresponding region in spotted gar and then investigate the appropriate location in the genomes of zebrafish or other fish models.

Yes, but what makes gar so special?

First, ever since the fish and human lineages split about 450 million years ago, the gar genome has not changed as much as that of more modern fish like zebrafish. Second, gars also offer a window into the evolution of vertebrate anatomy because their body plan has not changed as much as those of modern fish. Gar helps to understand how fins evolved into limbs that allowed fish to walk on land and how enamel on our teeth evolved from ancient types of fish scales, which are still found in gar.

"We are using gar to further improve comparisons of humans to zebrafish to make zebrafish an even better model system for disease research," Braasch said. "And by studying gar, zebrafish and other fishes side-by-side, we also hope to answer many more evolutionary questions about the origin of vertebrate genomes and their biology."

###

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Media Contact

Layne Cameron
[email protected]
517-353-8819
@MSUnews

http://msutoday.msu.edu/journalists/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Shifts in Infective Endocarditis Demographics: 2012-2021

September 16, 2025

Assessing Disability: WHO vs. Daily Living Scales

September 16, 2025

Creating a Sulfur Vacancy Redox Disruptor for Innovative Therapies Targeting Cuproptosis, Ferroptosis, and Apoptosis through Photothermoelectric and Cascade Catalytic Mechanisms

September 16, 2025

Practical Skin Care Tips for 22–24 Week Infants

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Shifts in Infective Endocarditis Demographics: 2012-2021

Assessing Disability: WHO vs. Daily Living Scales

Creating a Sulfur Vacancy Redox Disruptor for Innovative Therapies Targeting Cuproptosis, Ferroptosis, and Apoptosis through Photothermoelectric and Cascade Catalytic Mechanisms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.