• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Studying midwest soil production, erosion and human impacts

Bioengineer by Bioengineer
March 20, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UMass Amherst

AMHERST, Mass. – Geologist and geochemist Isaac Larsen at the University of Massachusetts Amherst has received a five-year, $542,000 faculty early career development (CAREER) grant from the National Science Foundation to address basic research questions about soil production, soil erosion, agricultural landscape evolution and human impact in these areas.

The CAREER award is the NSF's highest award in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and integrating education and research with their institution's mission.

Larsen and colleagues will study Midwest soils where remnants of the native prairie still exist, specifically in Iowa, Illinois, Minnesota, Nebraska and South Dakota. The overall topic is understanding rates at which natural soils are produced compared to how much is eroded by human intervention.

He says, "I think we'll be able to produce the first quantitative estimates of soil mass balance, production rates and soil lifespan in landscapes where soils form from glacial sediment, which are largely unknown at present. There is virtually no information on rates of soil formation in agricultural landscapes, yet these are some of the most fertile regions of the world."

Larsen adds, "In the time since farming began, you can measure the elevation difference between native prairie and farmed lands. Knowing the thickness of soil, we can estimate how long it will last, that is how long before it is gone if erosion rates continue the way they have. It's a geomorphology problem. We'll be asking how the landscape is evolving, at the same time we incorporate the human influence since agriculture began in this area in the mid-19th century."

Soil erosion reduces soil fertility, Larsen points out, resulting in diminished agricultural production that threatens food security. The cost of soil erosion in the U.S. reaches tens of billions of dollars a year and while the need to conserve soil is recognized, major uncertainties remain about how big the erosion problem is. Erosion is influenced not only by agricultural activities such as plowing and tilling but topography such as the steepness and shape of hills.

This research will combine several tools such as field surveying, analysis of cosmogenic nuclides, LiDAR-based topography and landscape evolution modeling. In addition to comparing measurements between prairie and agricultural fields at about 40 sites, Larsen and colleagues will use a sophisticated geochemistry lab at UMass Amherst to analyze cosmogenic radio nuclides collected at the sites to determine the long-term rates of erosion before European settlement.

Long-lived cosmogenic radionuclides are formed when cosmic rays that continually bombard the Earth smash into oxygen atoms and produce a rare isotope called Beryllium 10 (10Be), Larsen explains. "In areas where erosion is taking place rapidly, there will be little 10Be because it's lost. But soils in slowly eroding areas accumulate more 10Be."

The analysis process involves dissolving soils and separating the 10Be for analysis in an accelerator mass spectrometer in which it is possible to measure individual 10Be atoms. These concentrations will be used to quantify the depth of soil loss per year during the period that pre-dates agriculture in the Midwest.

The researchers will then use soil loss measurements to calibrate a numerical landscape evolution model using high-resolution LiDAR to predict, at the landscape scale, how much soil has been lost as a result of topography scaling up from the field sites.

Larsen says this work will support one Ph.D. student and many undergraduate students over the five years, as they collect field samples and follow it up with lab work on those samples. They will learn the about native soils and agriculture in the U.S. This education plan will train the next generation of scientists in fieldwork and geochemical data analysis to make landscape scale predictions of the magnitude of soil loss, the geochemist notes.

###

Media Contact

Janet Lathrop
[email protected]
413-545-0444
@umassscience

http://www.umass.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionary Three-Sensor Technology Promises to Transform Obesity Treatment

September 17, 2025

Novel CRISPR-Based Test Promises Tuberculosis Screening with Just a Mouth Swab

September 17, 2025

Study Reveals First Evidence of Plastic Nanoparticles Accumulating in Edible Parts of Vegetables

September 17, 2025

Heavy Metals Impact Glycemic Control in Egyptian Kids

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Three-Sensor Technology Promises to Transform Obesity Treatment

Novel CRISPR-Based Test Promises Tuberculosis Screening with Just a Mouth Swab

Study Reveals First Evidence of Plastic Nanoparticles Accumulating in Edible Parts of Vegetables

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.