• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers mapped interactions of key group of human proteins, the protein phosphatases

Bioengineer by Bioengineer
March 15, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Markku Varjosalo

Coordinated activities of protein kinases and protein phosphatases ensure phosphorylation homeostasis and amplitude of signaling response, and understandably its imbalance is linked to diseases, such as cancer. Unlike with protein kinases, the current knowledge of protein phosphatase functions and especially on their formed interactions and complexes remains fragmentary.

In a study published in the 26th of April issue of Cell Systems (advanced online 15th March), a Finnish-Swiss research team led by Dr. Markku Varjosalo from the Institute of biotechnology and University of Helsinki, report global quantitative interactomics analysis covering half of the human protein phosphatome. They further derive and characterize the molecular functions and pathways that the protein phosphatases connect via their stable or transient interactors. Furthermore, their study reveals novel physical as well as functional links to phosphatase-based regulation of human cancer.

"This study is a continuum of our almost a decade long efforts to systematically dissect the molecular mechanisms behind the protein phosphorylation. After our extensive analyses on protein kinases, the protein phosphatases were naturally to follow. The protein phosphatases were too long thought to just be the negative counterpart of protein kinases, with promiscuous activity and low intrinsic substrate specificity. Recent studies such as ours, however, establish protein phosphatases as positive and essential regulators of signal transduction, with remarkable substrate specificity and coordinated activities. The phosphatases are also promising targets for therapeutic intervention in the treatment of various cancers", Dr. Varjosalo states.

###

The study was financially supported by the Academy of Finland, University of Helsinki, The Sigrid Juselius Foundation, The Emil Aaltonen Foundation, the Swiss Initiative in Systems Biology (SystemsX.ch), Instrumentarium Science Foundation and the Cancer Society of Finland.

Media Contact

Dr. Markku Varjosalo
[email protected]
358-294-159-413
@helsinkiuni

http://www.helsinki.fi/university/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.