• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Increased water availability from climate change may release more nutrients into soil in Antarctica

Bioengineer by Bioengineer
March 13, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Satellite images provided by the Polar Geospatial Center. Graphic by Ruth Heindel.

As climate change continues to impact the Antarctic, glacier melt and permafrost thaw are likely to make more liquid water available to soil and aquatic ecosystems in the McMurdo Dry Valleys, potentially providing a more nutrient-rich environment for life, according to a Dartmouth study recently published in Antarctic Science. (A pdf of the study is available upon request).

With an average annual air temperature of -2.2 F and an average precipitation of 3-50 mm per year, the McMurdo Dry Valleys of Antarctica are dominated by dry soils underlain by permafrost. The Dry Valleys ecosystem is severely limited by liquid water and nutrients, resulting in limited organic matter. One such limited nutrient is phosphorus, an element that is essential to all living organisms. Understanding the spatial distribution of phosphorus in the soil is crucial to identifying where life could become more abundant in the future.

Dartmouth scientists examined the variability of soil phosphorus in the McMurdo Dry Valleys by evaluating two forms of phosphorus in surface soil samples: labile phosphorus, which is immediately available to organisms, and mineral phosphorus, which needs to be broken down by weathering before organisms can use it. The researchers analyzed how parent material, landscape age, soil chemistry and texture, and topography affect the two forms of phosphorus.

The findings indicate that in the McMurdo Dry Valleys, as for many other regions, the two forms of phosphorus, labile and mineral phosphorus, are not related. Even though rock type may be used to help predict the amount of mineral phosphorus in soils, it does not predict how much phosphorus is available to organisms. Instead, the available phosphorus was found to be correlated with soil conductivity, soil texture and topography. The findings also revealed that landscape age across a gradient of approximately 20,000 to 1.5 million years was not a strong predictor of either form of phosphorus.

"Mineral phosphorus, while not currently available to organisms, represents a large store of this essential nutrient that could become unlocked in the future," says lead author Ruth C. Heindel, a graduate student in earth sciences at Dartmouth.

As global warming continues to impact the McMurdo Dry Valleys of Antarctica, with more meltwater streams and water tracks travelling across the landscape, more mineral phosphorus is likely to become available through rock weathering over centuries to millennia. Phosphorus loads are also likely to increase to Dry Valleys aquatic ecosystems, which are currently some of the most phosphorus-limited ecosystems on the planet. As more phosphorus becomes available, microscopic organisms, such as nematodes, tardigrades, rotifers, algae and cyanobacteria, may become more abundant in the McMurdo Dry Valleys.

###

Ruth C. Heindel is available for comment at: [email protected]. Angela M. Spickard, research associate at Dartmouth; and Ross A. Virginia , Myers Family Professor of Environmental Science and director of the Institute of Arctic Studies at Dartmouth, also served as co-authors of the study.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://communications.dartmouth.edu/media/broadcast-studios.

Media Contact

Amy D. Olson
[email protected]
603-646-3274
@dartmouth

http://www.dartmouth.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.