• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

RIT helps advance space camera being tested on ISS

Bioengineer by Bioengineer
March 7, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Imaging technology advanced by researchers at Rochester Institute of Technology and Florida Institute of Technology is being tested on the International Space Station and could someday be used on future space telescopes.

A new twist on the charge injection device camera, originally developed in 1972 by General Electric Co., fine tunes the array of pixels for improved exposure control in low light conditions. The enhanced technology could give scientists a new method for imaging planets around other stars and improve the search for habitable Earth-like planets.

Zoran Ninkov, professor in RIT's Chester F. Carlson Center for Imaging Science, and Daniel Batcheldor, head of physics and Space Sciences at FIT, designed the charge injection device camera to capture contrasts between light emitted by astronomical objects.

"CID arrays offer considerable promise in many applications due to the focal plane architecture that allows random pixel access and non-destructive readout," said Ninkov, a member of RIT's Center for Detectors and Future Photon Initiative. "In addition to improving presently available devices, the development of next-generation imaging arrays promise considerable flexibility in read-out and on-chip processing for the future."

A SpaceX Falcon 9 rocket, on Feb. 19, carried the charge injection device to the International Space Station in the cargo of supplies and science experiments. Astronauts have installed the camera on a platform outside the space station. They will test the camera for six months.

"We expect to start seeing results by the end of April," said Batcheldor, lead scientist on the project. "A complex test pattern will be sent from a successfully operated camera through the ISS systems and down to the ground. A successful demonstration of CIDs on the International Space Station will put this technology at the NASA Technology Readiness Level 8, which means it's ready to fly as a primary instrument on a future space telescope."

Batcheldor is a former post-doctoral research associate in RIT's School of Physics and Astronomy and a former associate research scientist in RIT's Center for Imaging Science. He and Ninkov have worked together on this experiment for years. They previously have tested charge injection devices from ground-based observatories.

Limitations created by the Earth's atmosphere prevent the sensor from capturing images sharp enough to detect planets in other solar systems, Batcheldor noted.

###

Media Contact

Susan Gawlowicz
[email protected]
585-475-5061
@ritnews

http://www.rit.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.