• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Kagome Superconductor Exhibits Lattice-Driven Charge Density Wave Fluctuations Well Above Transition Temperature

Bioengineer by Bioengineer
April 25, 2025
in Chemistry
Reading Time: 1 min read
0
The lattice and electronic structure of KV3Sb5
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The lattice and electronic structure of KV3Sb5

In the realm of quantum materials, the intricate interplay between lattice structures and electronic states continues to captivate physicists, promising breakthroughs in our fundamental understanding and practical applications alike. Recent groundbreaking investigations into the kagome superconductor KV₃Sb₅ have unveiled unprecedented characteristics of charge density wave (CDW) phenomena, challenging long-standing perceptions about their emergence and persistence. The study sheds light on fluctuating lattice-driven CDWs existing well above the nominal transition temperature, a revelation that could redefine conceptual frameworks surrounding superconductivity and correlated electron systems.

Charge density waves constitute periodic modulations of electronic charge density within a crystalline solid, often coupled to distortions of the underlying lattice. Traditionally, these states

Tags: breakthroughs in superconductivitycharge density wave fluctuationscrystalline solid distortionselectronic states in solidskagome superconductor KV₃Sb₅lattice structures in quantum materialslattice-driven charge density wavesperiodic modulations of electronic chargequantum materials researchsuperconductivity and electron correlationtransition temperature phenomenaunderstanding correlated electron systems

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.