• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Two types of sensors that provide information on vineyard water status are designed

Bioengineer by Bioengineer
February 24, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: NUP/UPNA-Public University of Navarre

The first of these sensors provides information without being in contact with the plant and works by capturing information in terahertz, one of the ranges in the electromagnetic spectrum located between microwaves (that a mobile phone or TV need to function) and infrared waves. "These devices transmit a signal in terahertz and measure what proportion of the signal is returned by the trunk of the vine," explained Gonzaga Santesteban-GarcĂ­a, lecturer in the Department of Agricultural Production and leader of the research project. "It involves reflectance technology without any contact with the plant. That way, we can check the plant's water status. It is a technique that has not been used before for this purpose". The results of this development have been published in the journals "Frontiers in Plant Science" and "Journal of Infrared, Millimeter and Terahertz Waves".

The researchers have simplified the design of the sensor because a large bandwidth is not needed; it uses planar technology, which allows a high degree of miniaturization and thus considerably cuts the cost per unit, since many of its chips can be obtained commercially at a low price.

The second of the sensors developed is based on a totally different principle. In this case, the aim was to use magnetoelastic sensors to detect the changes that take place throughout the day and night in the size of the trunk or branches of the vine, in other words, they indicate how the vine is growing. Gonzaga-Santiesteban explained that sensors of this type offer two advantages over the classical dendrometers used by some wineries. "Firstly, this is a different technology enabling costs to be reduced and, secondly, we have made it more flexible so that these devices can be fitted not only to the trunk, as until now, but also to different parts of the vine, such as, for example, the cluster," he added. The results of this development have also been partially published in the journal "IEEE Transactions on Magnetics".

###

The development of these devices comes within the framework of the European VITICS Project that had total funding of almost 564,000 euros, co-funded by the European Regional Development Fund and the Government of Navarre. The following NUP/UPNA research groups have participated in this project: Advanced Fruit Farming and Wine Growing, responsible for coordinating the work; Antennas; Physical Properties and Applications of Materials; and Communication, Signals and Microwaves. They also had the collaboration of the following companies: Bodegas Ochoa (in Olite), Enonatura (in Villatuerta) and Cima-NTI (in Huarte-Pamplona).

Media Contact

Oihane Lakar
[email protected]
34-943-363-040

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Enhanced Polyolefin Separator Boosts Lithium Metal Battery Performance

Enhanced Polyolefin Separator Boosts Lithium Metal Battery Performance

August 28, 2025
Farm Subsidies Boost Fertilizer Use, Maize Yields in Malawi

Farm Subsidies Boost Fertilizer Use, Maize Yields in Malawi

August 28, 2025

Advancements in HSP90 Inhibitors: Structure-Activity Insights

August 28, 2025

Rewrite Barriers and solutions for introducing donation after circulatory death (DCD) in Japan as a headline for a science magazine post, using no more than 8 words

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Polyolefin Separator Boosts Lithium Metal Battery Performance

Farm Subsidies Boost Fertilizer Use, Maize Yields in Malawi

Advancements in HSP90 Inhibitors: Structure-Activity Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.