• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Investigating the interplay of folding and aggregation in supramolecular polymer systems

by
September 6, 2025
in Chemistry
Reading Time: 4 mins read
0
Exploring Interchain Aggregation in Folded Supramolecular Polymers
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In polymers, the competition between the folding and aggregation of chains, both at an individual level and between chains, can determine the mechanical, thermal, and conductive properties of such materials. Understanding the interplay of folding and aggregation presents a significant opportunity for the development and discovery of polymeric materials with tailored properties and functionalities.

In polymers, the competition between the folding and aggregation of chains, both at an individual level and between chains, can determine the mechanical, thermal, and conductive properties of such materials. Understanding the interplay of folding and aggregation presents a significant opportunity for the development and discovery of polymeric materials with tailored properties and functionalities.

This also holds true for non-covalent counterparts of conventional covalent polymers, i.e., supramolecular polymers (SPs). SPs are expected to have practical applications as novel stimuli-responsive polymer materials. Most SPs have a monotonous one-dimensional linear structure that tends to cause interchain aggregation, but there are very few reports of SPs that can form various higher-order structures through main chain folding. The development of an SP that exhibits both intrachain folding and interchain aggregation would provide a new guideline for creating novel SP materials whose properties can be controlled by higher-order structures.

A recent study published in the Journal of the American Chemical Society on July 25, 2024, reported a new folded SP that spontaneously undergoes interchain aggregation and converts into crystalline aggregates. With the help of atomic force microscopy (AFM), the research team has demonstrated the relationship between unfolding and aggregation. The study was led by Professor Shiki Yagai from Chiba University, with Kenta Tamaki, a doctoral course student at the Graduate School of Science and Engineering at Chiba University, as the first author.

“Originally, we found a monomer structure that polymerized in a spiral shape. This time, we partially changed the structure of the unit that drives the polymerization of the monomer to investigate the monomer-polymer relationship. To our surprise, we observed a phenomenon where the spiral spontaneously unfolds, and the different chains bundle together. We then incorporated a photo-switchable molecule so that this ‘spontaneous’ phenomenon could occur at ‘arbitrary timing’ through light, which provides the background for our research,“ says Prof. Yagai, speaking of the inspiration behind this study.

To design the new system, the team opted for twistable biphenyl and photoresponsive azobenzene units as a core, which self-assembled into the desired SPs. The SPs initially formed in a folded state slowly underwent rearrangement in internal molecular order over half a day and aggregated to a crystalline state. The inclusion of azobenzene units in the SPs led to photoinduced unfolding, which significantly accelerated the process by loosening the intrachain stabilization between folded loops.

The researchers observed that when the folded SP solution was left to stand at 20oC for several days, the polymers spontaneously underwent structural transition and precipitated. When the precipitate was visualized using AFM, they observed a unique intermediate state that appeared to be a coalescence of curved chains en route to the unified straight fibril structures. This intriguing image reminded the researchers of the interchain aggregation often observed in biological systems when proteins misfold, leading to amyloid fibril formation.

Furthermore, the team revealed the reason behind this structural transformation. This included intrachain molecular ordering due to conformational changes in the biphenyl unit and interchain ordering from the alignment of the aliphatic tails covering the exterior of the main chains. This mechanism is similar to the crystallization of conventional covalent polymers. The team corroborated this mechanism using the photoisomerization of the azobenzene unit. When they irradiated UV light to the folded SP solution to induce conformational changes in the azobenzene units, the unfolding of the main chain immediately occurred, and interchain aggregation was significantly accelerated.

Overall, this study opens unforeseen perspectives on the folding and aggregation phenomenon. The mesoscale SPs formed via self-assembly of a large number of molecules can serve as a useful model system to examine the dynamics between individual main chains at a molecular level. This, in turn, opens up new avenues for innovation in trans-scale materials science.

“These phenomena have traditionally been investigated using spectroscopic or macroscopic observations, reflecting the averaged behavior of the whole system. Therefore, the construction of more observable mesoscale models is expected to contribute significantly to the advancement of materials science. We are hopeful that these insights can encourage the development of meso-scale molecular assemblies with meaningful higher-order structures,” concluded Prof. Yagai.

 

About Professor Shiki Yagai from Chiba University
Shiki Yagai is a Professor at the Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan. In 2002, he received his Ph.D. from Ritsumeikan University, Japan. He joined Chiba University as an Assistant Professor and was promoted to Full Professor in 2017. He has over 160 publications in the fields of organic chemistry, supramolecular chemistry, and nanotechnology, with more than 7,500 citations. He has been bestowed with several awards, the most recent being the Swiss Chemical Society Lectureships (2017). Currently, Prof. Yagai and his team are working on the development of supramolecular functional materials.



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.4c07878

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Photoresponsive Supramolecular Polymers Capable of Intrachain Folding and Interchain Aggregation

Article Publication Date

25-Jul-2024

COI Statement

The authors declare no competing financial interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.