• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers

by
September 6, 2025
in Chemistry
Reading Time: 3 mins read
0
Image 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Microscope images could be obtained much more quickly – rather than one pixel at a time – thanks to a new imaging method for neutral atomic beam microscopes developed by Swansea University researchers.   It could ultimately lead to engineers and scientists getting faster results when they are scanning samples.

Microscope images could be obtained much more quickly – rather than one pixel at a time – thanks to a new imaging method for neutral atomic beam microscopes developed by Swansea University researchers.   It could ultimately lead to engineers and scientists getting faster results when they are scanning samples.

Neutral atomic beam microscopes are a major focus of research interest at present.  They are capable of imaging various surfaces which cannot be studied using commercially available microscopes.  These could include delicate samples – such as bacterial biofilms, ice films or organic photovoltaic devices – which are difficult to image or which are damaged and altered by electrons, ions and photons.

They work by scattering a beam of low energy neutral particles, usually helium atoms, from a surface to image its structure and composition. 

However, one major limitation of this approach is the imaging time required, as the image is measured one pixel at a time.  Improving the resolution by reducing the pin-hole dimension reduces the beam flux dramatically and requires significantly longer measurement time. 

This is where the new Swansea University research makes a difference.  The research group of Professor Gil Alexandrowicz from the chemistry department have developed a new – and faster – alternative method to pinhole scanning.

They demonstrated the new method using a beam of helium-3 atoms, a rare light isotope of regular helium.

The method works by passing a beam of atoms through a non-uniform magnetic field and using nuclear spin precession to encode the position of the beam particles which interact with the sample.

Morgan Lowe, a PhD student in the Swansea team, built the magnetic encoding device and performed the first set of experiments which demonstrate that the new method works.

The beam profile Mr. Lowe measured compares very well with numerical simulation calculations. The team has also used numerical simulations to show that the new magnetic encoding method should be capable of improving image resolution with a significantly smaller increase in time, in comparison to the currently used pin-hole microscopy approach.  

Professor Gil Alexandrowicz of Swansea University chemistry department, lead researcher, explained:

“The method we have developed opens up various new opportunities in the field of neutral beam microscopy. It should make it possible to improve image resolution without requiring forbiddingly long measurement times, and also has the potential for enabling new contrast mechanisms based on the magnetic properties of the sample studied.

In the immediate future the new method will be further developed to create a fully working prototype magnetic encoding neutral beam microscope.  This will allow testing of the resolution limits, contrast mechanisms and operation modes of the new technique.

In the more distant future, this new type of microscope should become available to scientists and engineers to characterise the topography and composition of sensitive and delicate samples they produce and/or study.” 

The research has been published in the latest issue of the scientific journal Nature Communications.



Journal

Nature Communications

DOI

10.1038/s41467-024-51175-2

Method of Research

Imaging analysis

Subject of Research

Not applicable

Article Title

Neutral beam microscopy with a reciprocalspace approach using magnetic beam spinencoding

Article Publication Date

15-Aug-2024

COI Statement

Professor Gil Alexandrowicz is the inventor of a patent application submitted by Swansea University that covers the use of magnetic encoding for neutral beam microscopy. The remaining authors declare no competing interests

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Charting the Universe: Faster Mapping with Unmatched Precision

September 16, 2025
blank

Quantum Sensors Built to Withstand Extreme Pressures

September 15, 2025

Princeton Chemistry’s Hammes-Schiffer Unveils First-Principles Method for Molecular Polaritons

September 15, 2025

Smoking or Vaping Could Elevate Your Risk of Developing Diabetes, New Study Finds

September 15, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Rib Fracture Detection via Post-Mortem Photon CT

Updated VasCog-2-WSO Criteria Enhance Diagnosis of Vascular Cognitive Impairment and Dementia

Using Cell-Free DNA, miRNA to Estimate Postmortem Interval

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.