• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Breakthrough in high-performance computing and quantum chemistry revolutionises drug discovery

by
July 31, 2024
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Led by University of Melbourne theoretician and HPC expert Associate Professor Giuseppe Barca, a research team has achieved the first quantum simulation of biological systems at a scale necessary to accurately model drug performance.

CDK2 OpenMM Setonix Simulation

Credit: Associate Professor Giuseppe Barca

Led by University of Melbourne theoretician and HPC expert Associate Professor Giuseppe Barca, a research team has achieved the first quantum simulation of biological systems at a scale necessary to accurately model drug performance.

Utilising the unprecedented “exascale” power of the Frontier supercomputer at the Oak Ridge Leadership Computing Facility in Tennessee, US, the team has developed groundbreaking software capable of accurately predicting the chemical reactions and physical properties of molecular systems comprising up to hundreds of thousands of atoms – delivering highly precise predictions of molecular behaviour and setting a new benchmark in computational chemistry.

The project brought together expertise in chemistry, drug discovery, quantum mechanics, and supercomputing, with the Oak Ridge National Laboratory, leading semiconductor company AMD and deep-tech startup QDX collaborating on the project.

The result of more than four years of record-breaking research, this advancement allows for the study of biomolecular-scale systems with quantum-level accuracy for the first time ever. This cutting-edge simulation capability enables the observation and understanding of these systems in unprecedented detail, which is crucial for improving the evaluation of traditional drugs and designing new therapeutics that interact more effectively with target biological systems.

“This breakthrough enables us to simulate drug behaviour with an accuracy that rivals physical experiments. We can now observe not just the movement of a drug but also its quantum mechanical properties, such as bond breaking and formation, over time in a biological system. This is vital for assessing drug viability and designing new treatments,” Associate Professor Barca said.

Today, over 80 per cent of disease-causing proteins cannot be treated with existing drugs, and only two per cent work with known drugs. This shows how limited current methods are. Advanced quantum mechanics and HPC broadens the computational toolset for drug discovery, providing unprecedented levels of speed and accuracy at biologically-relevant scale. Importantly, they also provide insights and capabilities previously not possible with traditional computational chemistry to unlock new ways of modulating targets of therapeutic interest and expand the number of disease targets for which effective therapies are available.

The simulations compute a drug molecule’s affinity for a specific target, such as a genetically mutated protein causing disease. Algorithms then calculate the drug’s effectiveness by evaluating the strength of the bond between the drug and the target, demonstrating drug potency. To test a drug effectively through quantum simulation, the biological model system must integrate thousands of atoms.

“This is exactly why we built Frontier, to tackle larger, more complex problems facing society,” said Dmytro Bykov, a computational chemist at Oak Ridge National Laboratory. “By breaking the exascale barrier, these simulations push our computing capabilities into a brand new world of possibilities with unprecedented levels of sophistication and radically faster times to solution — and this is just the beginning of the exascale era.”

Dr Jakub Kurzak, principal member of technical staff at AMD and representative for AMD at Oak Ridge National Laboratory, said: “We are thrilled to see AMD high performance computing technologies enable breakthrough exascale science in medical research and deliver the computing performance to accurately model the highly complex physics of molecular systems for drug discovery.”

Loong Wang, Co-Founder and CEO of QDX, said: “At QDX, we are incredibly excited to transform groundbreaking scientific advancements into a powerful, user-friendly platform that accelerates and enhances drug discovery, opening doors to innovative treatments. Our advanced quantum simulations have set a new benchmark for accuracy at a biologically-relevant scales. We hope that this technology will enable new drugs to be developed faster and cheaper, and for diseases that have — so far — been too difficult to treat.”

Associate Professor Barca, based in the Faculty of Engineering and Information Technology’s School of Computing and Information Systems, was nominated by The Australian as one of Australia’s Top 250 Researchers in 2024.

In 2023, he co-founded the company QDX, which is already using high-performance quantum simulations to accelerate new therapeutics design. QDX has secured commercial deals with pharmaceutical companies and tech start-ups in Australia, Singapore and the US.

“Thanks to new computing and software capabilities that enable accurate modelling at the quantum mechanical level, we can achieve predictive accuracy close to experimental results. These calculations were completely unfeasible just a few years ago,” Associate Professor Barca said.



Share12Tweet8Share2ShareShareShare2

Related Posts

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

August 3, 2025
Bright Excitons Enable Optical Spin State Control

Bright Excitons Enable Optical Spin State Control

August 3, 2025

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    53 shares
    Share 21 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Predicting Colorectal Cancer Using Lifestyle Factors

    41 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Nanoplastics: Dielectrophoresis Meets Raman Spectroscopy

Introducing The Lancet Countdown on Health and Plastics: A Groundbreaking Report

Dual-Targeting Clears HER2 IHC Diagnostic Hurdles

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.