• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Building a molecular brain map to understand Alzheimer’s disease

by
July 24, 2024
in Chemistry
Reading Time: 2 mins read
0
Hansruedi Mathys, Ph.D.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Less than a decade ago, when Dr. Hansruedi Mathys launched an ambitious project to create an annotated library of all the gene readouts stored within 100 individual brain cells, the task felt daunting.

Hansruedi Mathys, Ph.D.

Credit: Hansruedi Mathys

Less than a decade ago, when Dr. Hansruedi Mathys launched an ambitious project to create an annotated library of all the gene readouts stored within 100 individual brain cells, the task felt daunting.

Now, with technological advances, Mathys successfully mapped out such ‘transcriptomes’ from not just 100, but from 1.3 million brain cortex cells from 48 individuals with and without Alzheimer’s disease.

Mathys, who pioneered single-cell transcriptomic analysis on post-mortem human brain tissue during his postdoctoral training and is now an assistant professor of neurobiology at the University of Pittsburgh School of Medicine, says that the resulting atlas of the aging human brain holds molecular insights into the brain’s vulnerability and resilience.

“I am extremely interested in understanding the phenomenon of cognitive resilience where, despite the characteristic signs of Alzheimer’s tissue pathology, individuals display no cognitive impairment,” Dr. Mathys said. “Our recent findings have made me more hopeful than ever that it might be possible to artificially induce such resilience in people who otherwise are susceptible to memory loss.”

In the study, published this week in Nature, Mathys and his colleagues at the Massachusetts Institute of Technology analyzed transcriptomes of cells across six distinct brain regions that are often affected by Alzheimer’s pathology. The resulting atlas, which is now available online to researchers worldwide, could be used as a tool for gene and molecular discovery across pathways affecting brain health.

By tracking how transcriptomic changes are linked to cognitive decline and Alzheimer’s pathology, Mathys and his colleagues discovered that astrocytes – one of the cell types that make up the brain tissue scaffold alongside maintaining a host of other crucial functions – could be holding a key to cognitive resilience. Mathys’ ongoing research, which resulted from the transcriptome mapping, aims to explore the functional significance of altering astrocyte metabolic pathways to affect cognitive function.

“There is still a lot to learn about Alzheimer’s disease and the human brain,” said Mathys. “This project is just the beginning.”



Journal

Nature

DOI

10.1038/s41586-024-07606-7

Article Title

Single-cell multiregion dissection of Alzheimer’s disease

Article Publication Date

24-Jul-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.