• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Unlocking secrets of stomatal regulation: Phosphoactivation of SLAC1 in plant guard cells

by
July 15, 2024
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a study published in PNAS on July 8, researchers from the Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Sciences (CAS) have provided mechanistic insights into how SLAC1, a key anion channel specifically expressed on the plasma membrane of guard cells that form stomata in plant leaves, is activated by phosphorylation.

Regulation of SLAC1 activity

Credit: IGDB

In a study published in PNAS on July 8, researchers from the Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Sciences (CAS) have provided mechanistic insights into how SLAC1, a key anion channel specifically expressed on the plasma membrane of guard cells that form stomata in plant leaves, is activated by phosphorylation.

Plants adjust their stomatal pores in response to environmental cues such as high levels of carbon dioxide, ozone, drought, and microbial invasion to adapt to environmental changes and support growth, according to the researchers.

Plants sense environmental signals and control the phosphorylation of SLAC1 through protein kinases. When activated, SLAC1 facilitates anion efflux from the guard cells, causing membrane depolarization that activates downstream GORK channels, thereby reducing turgor pressure and closing the stomata.

Previously, the researchers unveiled the first cryo-EM structure of plant SLAC1, which mainly includes the transmembrane domain (TMD) but lacks its N- and C-terminal “tails” (~180 aa and ~60 aa, respectively) due to their flexibility. They also identified six critical phosphorylation sites on the N-terminus that are essential for channel activation; however, the mechanism underlying phosphoctivation remains elusive.

In this study, they showed that SLAC1 channels are maintained in an auto-inhibited state by their N-termini, which, when removed, lead to kinase-independent activation. AlphaFold modeling showed that the flexible N- and C-termini form a cytosolic regulatory domain (CRD) that interacts with the pore-forming TMD to maintain the auto-inhibited state. In response to environmental cues, plants phosphorylate SLAC1, releasing it from auto-inhibition and allowing activation.

Further studies reveal that this activation induces a conformational change in the CRD, reorienting the pore helices within the TMD, thus causing anion efflux and membrane depolarization, ultimately leading to stomatal closure.

Precise control of these pores is crucial because inadequate opening can impede photosynthesis, while excessive opening can lead to plant dehydration and wilting.

These findings help scientists understand how plants cope with extreme and varying environmental climate changes, such as drought and increased carbon dioxide and ozone levels. A deeper understanding of the mechanism of SLAC1 in stomatal control will be crucial for developing drought-resistant or water-efficient plant cultivation strategies.

This work was funded by the National Key R&D Program of China, the National Natural Science Foundation of China, and the Strategic Priority Research Program of CAS, etc.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2323040121

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Mechanistic insights into phosphoactivation of SLAC1 in guard cell signaling

Article Publication Date

10-Jul-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

UCLA Researchers Chart Primate Ovarian Reserve Development, Unlocking Vital Insights into Women’s Health

UCLA Researchers Chart Primate Ovarian Reserve Development, Unlocking Vital Insights into Women’s Health

August 26, 2025
Brain and Gill Kynurenine Pathway Regulation in Shrimp

Brain and Gill Kynurenine Pathway Regulation in Shrimp

August 26, 2025

Resistant Starch Boosts Gut Health in Ready Meals

August 26, 2025

Post-Disbudding Pain Alters Calves’ Play Behavior

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Trends and Risks of Cardiac Arrest in China

lncRNAs: Key to Colorectal Cancer Diagnosis

Zero-Strain Mn-Rich Cathodes Boost Next-Gen Batteries

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.