• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

DeepEvo: An “intelligent” strategy for engineering customized proteins

by
June 27, 2024
in Biology
Reading Time: 4 mins read
0
Fig.1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Engineering proteins for desirable traits has been the holy grail of modern biotechnology. For example, the food industry can benefit from engineered enzymes which have the ability to enhance biochemical reactions at higher temperatures, as compared to natural enzymes. This can save valuable resources such as labor, money, and time. However, the process of arriving at a functional protein of interest with the desired trait presents significant challenges. 

Fig.1

Credit: The authors

Engineering proteins for desirable traits has been the holy grail of modern biotechnology. For example, the food industry can benefit from engineered enzymes which have the ability to enhance biochemical reactions at higher temperatures, as compared to natural enzymes. This can save valuable resources such as labor, money, and time. However, the process of arriving at a functional protein of interest with the desired trait presents significant challenges. 

Current protein engineering approaches, such as directed evolution, rely heavily on chance to narrow down ideal variants of the protein of interest. Directed evolution uses repeated introductions of protein sequence alterations called mutations (iterative mutagenesis) followed by quick screening of large numbers of the variant proteins (high-throughput screening). Not surprisingly, this method is labor-intensive and inefficient. 

To overcome these limitations, a group of researchers from China led by Dr. Huifeng Jiang from the Tianjin Institute of Industrial Biotechnology at the Chinese Academy of Sciences and National Center of Technology Innovation for Synthetic Biology, developed a protein engineering strategy predicated on artificial intelligence called “DeepEvo.” Explaining further, Dr. Jiang states, “DeepEvo uses a deep evolution strategy, combining principles of deep learning—a process that emulates how the living brain functions—and evolutionary biology.” The study was published online in BioDesign Research on 20 March, 2024.

The researchers applied DeepEvo for engineering high-temperature tolerance in an enzyme called glyceraldehyde-3-phosphate dehydrogenase (G3PDH). G3PDH breaks down glucose to generate energy during glycolysis in living cells. When the team experimentally validated the DeepEvo results, they achieved a promising success rate of over 26%. 

In the study, the data used for DeepEvo involved sequences from organisms with varying optimal growth temperatures (OGT) and naturally occurring sequences with desired functions. The developed DeepEvo strategy comprised a selector (Thermo-selector) and a variant generator (Variant-generator) to yield functional protein sequences incorporating the desired trait. While the selector acted as a selective pressure to enrich the desired protein sequences, the variant generator produced these sequences—in this case, G3PDH variants with high-temperature tolerance. The sequences labeled with OGT trained the Thermo-selector, while those with the desired function trained the Variant-generator. The Thermo-selector filtered sequences, guiding the Variant-generator. 

Notably, a protein language model—a type of deep learning model—formed the basis for the Thermo-selector used in this study. Such models are trained on vast amounts of real-world protein sequence data to learn the patterns and features inherent in those sequences. This developed selector uses a learned representation of protein sequences to guide the generation and selection of sequences with the desired trait.

Furthermore, the researchers accumulated high-temperature tolerance traits in the protein sequences through an iterative process involving the generator and selector. Iterative refinement of sequences predicted as high-temperature tolerant formed a cycle of sequence generation. Explaining further, Dr. Jiang adds, “The iterative process involved in DeepEvo mimics the process of natural selection, where functional sequences are favored and accumulated over successive generations, ultimately leading to the development of protein variants with the desired properties.“

Consequently, the researchers verified the predicted high-temperature tolerant protein sequences conserving functional motifs through wet lab experiments. From the 30 generated sequences, they obtained eight variants, thus highlighting the high efficiency of DeepEvo in engineering proteins with high-temperature tolerance. 

Going ahead, DeepEvo could aid the selection of diverse traits of interest, not just high-temperature tolerance. In this regard, Dr. Jiang remarks, “We could apply the DeepEvo approach for engineering other protein properties such as acid-base tolerance, catalytic activity, and antigen affinity, facilitating the generation of new proteins with multiple desired properties.”  

DeepEvo has thus, paved the way for efficient protein engineering, all thanks to the efforts of Dr. Jiang and his research group. Easy and efficient production of proteins customized for desired traits may soon become a reality. 

###

References

DOI

10.34133/bdr.0031

Original Source URL

https://spj.science.org/doi/10.34133/bdr.0031

Authors

Huanyu Chu1,2†, Zhenyang Tian 1,2,3†, Lingling Hu1,2,4, Hejian Zhang 1,2,4,Hong Chang1,2,4, Jie Bai 1,2,4, Dingyu Liu1,2, Lina Lu1,2, Jian Cheng 1,2,and Huifeng Jiang 1,2*

Affications

1 Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of IndustrialBiotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.

2 National Center of TechnologyInnovation for Synthetic Biology, Tianjin 300308, P. R. China.

3Tianjin Zhonghe Gene Technology Co., LTD,Tianjin 300308, P. R. China.

4College of Biotechnology, Tianjin University of Science and Technology,Tianjin 300457, P. R. China.



Journal

BioDesign Research

DOI

10.34133/bdr.0031

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

High-temperature Tolerance Protein Engineering through Deep Evolution

Article Publication Date

3-Apr-2024

COI Statement

The authors declare that they have no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025
blank

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025

Exploring Shigella Phage Sf14’s tRNA Contributions

October 3, 2025

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

October 3, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PLK1 Inhibition Boosts Gemcitabine Apoptosis in Pancreatic Cancer

How Body Weight Shapes First Impressions

Breakthroughs in Pediatric Gastrointestinal Bleeding Diagnosis

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.