• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Skeletal stem cells in bone development, homeostasis, and disease

Bioengineer by Bioengineer
June 5, 2024
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SSCs are essential for bone development, homeostasis, and repair. Recent studies have identified distinct SSC populations in long bones, craniofacial bones, and spine. Techniques like single-cell sequencing have mapped SSC lineage commitment trajectories. SSCs also play roles in bone repair and diseases.

Image

Credit: Guixin Yuan, Xixi Lin, Ying Liu, Matthew B Greenblatt, Ren Xu

SSCs are essential for bone development, homeostasis, and repair. Recent studies have identified distinct SSC populations in long bones, craniofacial bones, and spine. Techniques like single-cell sequencing have mapped SSC lineage commitment trajectories. SSCs also play roles in bone repair and diseases.

Highlights from the review include:

  1. Diversity of SSCs

Recent studies have shown that SSCs are not a homogeneous group but consist of distinct populations depending on their location and the stage of bone development. For instance, SSCs in long bones differ from those in craniofacial bones, which have unique properties essential for specific bone formation processes. Techniques such as single-cell sequencing have been pivotal in identifying these differences and mapping the lineage trajectories of SSCs.

  1. Aging and SSC Function

The aging process significantly impacts SSCs, leading to decreased diversity and functionality. Aging SSCs exhibit reduced osteochondrogenic activity and contribute to a pro-inflammatory environment in the bone marrow. This dysfunction is intrinsic to SSCs and not entirely reversible through exposure to young systemic environments. However, treatments like BMP2 and CSF1 antagonists have shown promise in restoring some of the regenerative capacities of aged SSCs.

  1. Role in Skeletal Repair

SSCs play a crucial role in fracture healing by increasing in number and enhancing bone formation capabilities. The periosteum, containing periosteal skeletal stem cells (PSCs), is particularly important in this process. However, conditions like obesity and diabetes negatively affect SSC expansion and fracture healing. SSCs also hold potential for regenerating articular cartilage, which is typically considered irreparable, through mechanisms involving BMP2.

  1. Disease Implications

Mutations in genes affecting SSCs can lead to bone diseases. For example, mutations in the Twist1 gene result in craniosynostosis, a condition where the skull bones fuse prematurely. Studies have shown that SSCs in these conditions exhibit altered differentiation patterns, which can be modulated by factors like IGF1 to prevent disease progression. This highlights the therapeutic potential of targeting SSC pathways in bone diseases.

Skeletal stem cells (SSCs) are essential for the formation, maintenance, and repair of bones. The revelation that SSCs comprise a diverse group of cells with specific roles depending on their location and developmental stage has revolutionized our understanding of bone biology. Aging and disease significantly impact SSC function, but recent research offers hope for therapeutic interventions that can restore SSC activity and improve bone health. This review highlights the diversity of SSCs across different skeletal regions and developmental stages, illuminating their roles in bone development, homeostasis, and disease. Future research should further explore the regulation and plasticity of SSCs to advance our knowledge and therapeutic strategies. The work entitled “ Skeletal stem cells in bone development, homeostasis, and disease” was published on Protein & Cell (published on Mar. 5, 2024).



Journal

Protein & Cell

DOI

10.1093/procel/pwae008

Method of Research

Systematic review

Subject of Research

Cells

Article Title

Skeletal stem cells in bone development, homeostasis, and disease

Article Publication Date

5-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Tadpole Buccopharyngeal Morphology in Sphaenorhynchini

August 24, 2025
Cinnamon Extracts: Impact on Musca domestica Responses

Cinnamon Extracts: Impact on Musca domestica Responses

August 24, 2025

Frog Legs: Diverse Origins Revealed by DNA Barcoding

August 24, 2025

Evaluating Potchefstroom Koekoek Chickens in Varied Environments

August 24, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    85 shares
    Share 34 Tweet 21
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Creating the Pediatric Weight Questionnaire for Youth Obesity

Exploring Tadpole Buccopharyngeal Morphology in Sphaenorhynchini

Triglyceride-Glucose and Waist Circumference: Diabetes Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.